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Abstract: The Ethereum blockchain network enables transaction processing and 

smart-contract execution through levies of transaction fees, commonly known as gas 

fees. This framework mediates economic participation via a market-based mechanism 

for gas fees, permitting users to offer higher gas fees to expedite processing. 

Historically, the ensuing gas fee volatility led to critical disequilibria between supply 

and demand for block space, presenting stakeholder challenges. This study examines 

the dynamic causal interplay between transaction fees and economic subsystems 

leveraging the network. By utilizing data related to unique active wallets and 

transaction volume of each subsystem and applying time-varying Granger causality 

analysis, we reveal temporal heterogeneity in causal relationships between economic 

activity and transaction fees across all subsystems. This includes: (a) a bidirectional 

causal feedback loop between cross-blockchain bridge user activity and transaction 

fees, which diminishes over time, potentially signaling user migration; (b) a 

bidirectional relationship between centralized cryptocurrency exchange deposit and 

withdrawal transaction volume and fees, indicative of increased competition for block 

space; (c) decentralized exchange volumes causally influence fees, while fees causally 

influence user activity, although this relationship is weakening, potentially due to the 

diminished significance of decentralized finance; (d) intermittent causal relationships 

with miner extractable value bots; (e) fees causally influence non-fungible token 

transaction volumes; and (f) a highly significant and growing causal influence of 

transaction fees on stablecoin activity and transaction volumes highlight its 

prominence. These results inform strategic considerations for stakeholders to more 

effectively plan, utilize, and advocate for economic activities on Ethereum, enhancing 

the understanding and optimization of within the rapidly evolving economy. 
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1 Introduction 

The Ethereum network is a sophisticated fee market that facilitates economic 

participation by mediating transaction fees.1 As a decentralized platform, it enables 

users to create and deploy smart contracts, which are programmatic transaction 

protocols that automatically execute the terms of an agreement between buyers and 

sellers. These stipulations are directly inscribed into the code, making them more 

transparent and secure. To compensate for the computational resources consumed by 

the network during transaction execution, users pay transaction fees [1]. Since its 

genesis in 2015, the Ethereum network has engendered the emergence of an array of 

decentralized economic systems, each reliant upon the underlying transaction costs and 

network scalability in unique ways. Transactions on the Ethereum network are 

processed by validating new blocks, on average, every 12 seconds. Each block 

consolidates a variable number of initiated transactions, which are subsequently 

confirmed by the network.2 In 2022, the network processed an average of approximately 

1.2 million transactions daily [2]. However, network scalability is inherently 

constrained, as only a specific number of transactions can be validated within each 12-

second interval. Historically, this constraint has caused critical disequilibria between 

supply and demand. 

The rapid adoption of high-profile blockchain-based applications has given rise to 

numerous challenges, including network congestion and increased transaction costs. A 

salient example is the late 2017 phenomenon of CryptoKitties, a game employing 

blockchain technology to enable the buying, collecting, breeding, and selling of digital 

cats in the form of non-fungible tokens (NFTs). The unprecedented demand for these 

digital collectibles culminated in a record-high volume of transactions on the network, 

consequently inducing severe congestion and a surge in transaction costs [3], [4]. 

Another manifestation of this phenomenon can be observed in digital token sales, 

conducted by blockchain enterprises, that encountered extraordinary investor demand, 

 

1 Transaction fees are pivotal in facilitating economic participation in the Ethereum network. Firstly, 

transaction fees incentivize users to employ the network efficiently by ensuring network utilization costs 

scale with transaction complexity. This approach mitigates risks of network overload by discouraging 

users from submitting unnecessary transactions that could impede network performance and increase costs 

for other users. Secondly, transaction fees contribute to the economic sustainability of the Ethereum 

network by compensating miners (prior to September 15, 2022) or validators (after September 15, 2022) 

for their network operation services. This incentivization model rewards their contribution to the network's 

security and stability, strengthening overall network performance and resilience. Thirdly, transaction fees 

foster decentralization of the Ethereum network by removing barriers to entry for new users or developers. 

2 On September 15, 2022, the Ethereum blockchain underwent a substantial upgrade at block 15537393, 

commonly referred to as the Merge. This pivotal transition replaced the traditional proof-of-work (PoW) 

consensus mechanism with the more energy-efficient proof-of-stake (PoS) mechanism, where validators 

stake Ether in lieu of relying on hardware-based miners. Before the upgrade, the average block time 

experienced significant fluctuations due to network congestion. Post-merge, however, the block time has 

become more predictable and consistent, averaging approximately 12 seconds. This enhancement in block 

time can be ascribed to the accelerated and more efficient block processing facilitated by the PoS 

mechanism, as well as alterations to the transaction fee structure that have effectively mitigated congestion 

and augmented overall network efficiency. 
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leading to the so-called gas wars [5]. The term gas refers to the internal metering 

variable of the Ethereum network, which necessitates the payment of gas for every 

transaction execution.3 Heightened demand for digital token sales in 2017 and 2018 

prompted a spike in gas prices, rendering transactions on the Ethereum network 

increasingly costly. Furthermore, instances of fundamentally high network utilization 

also had a detrimental impact on the efficiency of individual applications. In 2021, users 

faced abnormally high transaction fees when exchanging Ethereum-based tokens on 

decentralized exchanges (DEXs) such as Uniswap. These fees occasionally surpassed 

several hundred dollars, rendering transactions prohibitively costly [6]. Such high 

transaction costs, coupled with the limitations imposed by network congestion, rendered 

the Ethereum network less accessible and efficient, prompting individual users, 

protocols, and applications to suspend their activity or migrate to other blockchains [7]. 

Numerous studies have explored the Ethereum fee market from technical or 

modelling perspectives [8]–[12], often less focusing on the economic foundations of the 

Ethereum ecosystem.4 However, it is crucial to acknowledge the instrumental role of 

economic incentives and developments in shaping Ethereum's trajectory and fee market, 

as evidenced by phenomena such as CryptoKitties, token sales, and emergence of DEXs 

which profoundly impacted Ethereum's evolution. Incorporating an economic 

perspective into the analysis of Ethereum's fee market is essential for obtaining a 

comprehensive understanding of the ecosystem. While prior studies have examined 

individual systems and unanticipated events in specific systems [5], [13], there remains 

a lack of comprehensive analyses encompassing multiple economic systems and their 

potential interdependencies within the Ethereum fee market context. This research gap 

underscores the necessity for a thorough investigation of the economic environment in 

which fees function, to comprehend their relevance. Such an analysis would constitute 

a valuable reference for decision-making in projects intending to utilize Ethereum as an 

infrastructure. Additionally, from a stakeholder-oriented perspective [14], it is pertinent 

to assess the extent to which projects can tolerate comparatively less favorable fees, in 

comparison to layer-2 solutions such as Arbitrum or Optimism, given the potential 

network and spillover effects that may derive from other markets or assets on Ethereum. 

This would allow stakeholders to make informed decisions and adapt their strategies to 

the dynamic Ethereum fee market. 

This work aims to examine the activity of economic systems, classified based on 

their direct or indirect dependency on the Ethereum network, and evaluate their 

 
3 Ethereum transaction fees are remitted in Ether; however, the associated 'gas' fees are denominated in 

Gwei, where one Gwei is equivalent to 0.000000001 Ether. 

4 Reijsbergen et al. [46] determined that Ethereum Improvement Proposal (EIP) 1559 generally achieved 

its objectives, but suggested an alternative base fee adjustment rule employing variable learning rate 

mechanisms. Concurrently, Laurent et al. [9], [10] devised a novel Monte Carlo method to ascertain the 

minimum fee a user ought to pay for their transaction to be processed with a given probability within a 

specified timeframe. In contrast, Sousa et al. [10] found no evident correlation between Ethereum fee-

related characteristics, such as user-defined gas and gas price, and the pending time of transactions. Lastly, 

Werner et al. [11] introduced a gas price recommendation mechanism that amalgamates a deep-learning-

based price forecasting model with an algorithm parameterized by a user-specific urgency value. This 

mechanism led to average cost savings exceeding 50% compared to existing recommendation mechanisms 

while incurring only a slight delay. 
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influence on transaction fees. For example, miner extractable value (MEV) [15] may 

only be significant as long as (uninformed) market participants participate in the 

Ethereum network, as observed with DEXs and meme coins [16], [17]. In light of this 

context, we pose the research question: what significant economic activities transpire 

within the Ethereum network, and how do they affect transaction fees? 

To identify economic systems, we undertake an exploratory multivocal analysis of 

Ethereum data platforms, informed by the existing scientific literature on Ethereum. 

Following the identification of these systems, we delve into the central inquiry of this 

study: the elucidation of the causal relationship between individual systems and fees 

within the Ethereum network.5 We employ two proxies as measures for each system's 

economic activity: a) the number of users specific to a particular system and b) the on-

chain economic value transferred (in USD) for that system. This approach ensures that 

high-usage solutions with low volumes receive due attention, while also considering 

applications with relatively few users but significant transaction volumes. In essence, 

the two variables serve as complementary metrics for evaluating economic participation 

and relevance within the network.  

Given the temporal sensitivity of causality [18], [19] this study utilizes the time-

varying Granger causality methodology to discern the relationship between fees, 

blockchain users (represented by unique active wallets), and economic volume. This 

robust econometric methodology, devoid of pre-processing steps, is adept at identifying 

the inception and cessation dates of causal episodes. A comprehensive understanding 

of the bidirectional causality between these variables enables the revelation of the 

temporal trajectory of the causal relationship. Employing time-varying Granger 

causality for the identification of causal relationships further facilitates a plethora of 

research opportunities, encompassing an in-depth analysis of the temporality and 

directionality of relationships (i.e., whether they are positive or negative). 

 This study makes several contributions to the literature. Firstly, it reveals that 

transaction fees play an instrumental role in the functioning of a majority of the 

examined systems. Additionally, the activity and volume of numerous systems exert a 

considerable impact on network fees. It is worth noting that the causal relationships 

amongst variables exhibit dynamic properties and are subject to temporal fluctuations. 

This variability can be attributed to a combination of factors, including the 

microstructure of endogenous factors within the Ethereum ecosystem, as well as 

exogenous factors that are outside the scope of this investigation. Secondly, the results 

indicate that the number of unique active wallets influences the average fees in the 

network, and fees play a vital role in user migration. Consequently, fees ought to be 

judiciously managed by Ethereum network stakeholders. The causal relationship 

between fees, user counts, and the volume of deposits and withdrawals on 

 
5 This study opts to utilize the USD value of the transaction fee as opposed to the Gwei value, as the 

former exhibits greater stability and is less susceptible to fluctuations. For instance, should the value of 

Ether experience rapid appreciation or depreciation, the corresponding Gwei value in USD would undergo 

swift alterations, which ultimately impacts users' focus and considerations. In addition, it can be assumed 

that economic players will want to use a stable currency such as the USD for their planning. 
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cryptocurrency exchanges underscores the presence of a time-varying feedback loop 

within the Ethereum network's functioning. 

Thirdly, the investigation of the causal spillover between DEX volume, DEX users, 

and network fees emphasizes the necessity for DEXes to strike a balance between 

attracting more users and maintaining manageable fees. The diminishing significance 

of fees over time, for instance, for DEXes, implies that fees' impact on users may vary 

depending on the economic context, signifying the relevance of MEV for the Ethereum 

network at certain times. In conclusion, these findings provide valuable insights into the 

operation of these economic systems on Ethereum and underscore the importance of 

further research into the causal relationship between fees and network activity. 

This article proceeds as follows. Section 2 provides conceptual background in 

transaction costs from a theoretical perspective (2.1) and with a focus on the Ethereum 

network (2.2). In Section 3, the process of identifying economic systems on the 

blockchain network (3.1), data collection and descriptive considerations (3.2), and the 

empirical approach are described (3.3). Section 4 consists of the results of the time-

varying Granger causality. Section 5 discusses the results and concludes. 

2 Conceptual background 

2.1 Transaction cost theory 

Transaction cost theory, an economic concept that focuses on the costs associated 

with conducting transactions, posits that these costs can significantly impact the 

efficiency of resource allocation, regardless of the distribution of property rights. The 

theory is building on Coase [20], was initially proposed by Williamson [21] in the late 

1970s, and subsequently developed and refined for specific uses cases [22], [23]. In 

the context of Ethereum, the theory can help understand the role of transaction costs, 

such as gas fees, in allocating resources within the network. There are significant 

transaction costs in the Ethereum ecosystem, some of which include: 

• Information costs: Imperfect information, price volatility, and complexity 

contribute to information transaction costs in the Ethereum network. Users may lack 

accurate information about gas prices, leading to overpaying or underpaying and 

causing resource allocation inefficiencies. Gas price volatility and the intricacies of 

understanding and calculating gas fees further complicate decision-making, 

especially for those without technical expertise in blockchain technology [20][24]–

[26]. 

• Bargaining costs: The Ethereum network handles a vast number of transactions 

daily, making individual bargaining for each transaction time-consuming and 

impractical. Ethereum is designed to maintain pseudonymity, and direct negotiation 

of fees could jeopardize this anonymity. Additionally, the dynamic nature of gas 

prices and fluctuating demand for transaction fee negotiation challenging and 

unrealistic [27]–[29]. 

• Enforcement costs: In Ethereum's trustless, decentralized environment, enforcing 

agreed-upon fees and transaction inclusion can be challenging without a centralized 

authority. Resolving disputes related to transaction fees or performance is difficult 
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and costly. Aligning incentives for users and miners or validators is crucial, which 

can be achieved through well-designed economic mechanisms and consensus 

algorithms [30], [31]. 

In addressing information, bargaining, and enforcement costs, the Ethereum network 

employs a multifaceted approach. To mitigate information costs, gas price estimators 

have been developed, to provide real-time estimates to aid users in selecting suitable 

fees. Additionally, Ethereum's market-based mechanism for determining gas prices 

allows users to specify fees, while miners (before September 2022) or validators (after 

September 2022) opt for transactions based on the fees offered, approximating efficient 

resource allocation. Ongoing protocol upgrades, such as Ethereum 2.0, strive to enhance 

the predictability and user-friendliness of the gas fee market. As for enforcement costs, 

the network leverages smart contracts to automatically enforce agreements, thereby 

minimizing manual enforcement and dispute resolution. Ethereum relies on consensus 

algorithms, such as PoW (before September 2022) and PoS (after September 2022), to 

maintain blockchain integrity, align incentives, and ensure the inclusion of transactions. 

Furthermore, fee markets create incentives for miners to prioritize transactions with 

higher fees and for users to pay appropriate fees to facilitate prompt transaction 

processing. 

2.2 Ethereum transaction fees 

Ethereum is a blockchain platform that uses gas to execute transactions and host 

smart contracts [32]. The amount of gas used for a transaction is determined by the 

computing power required for that specific contract. The transaction fee for each 

execution is based on a free-market system, where the issuer decides how much they 

are willing to pay for each unit of gas. Miners or validators determine which transactions 

are included in blocks, e.g., the ones with the highest fees. However, the flexibility and 

complexity of this system present challenges for developers, maintainers, and users of 

blockchain-powered applications [33]. Based on an analysis of the gas usage of 

Ethereum transactions between October 2017 and February 2019, Zarir et al. [34] find 

that the majority of miners prioritized transactions based on gas prices alone. Further, 

the authors show that 25% of functions with at least 10 transactions have unstable gas 

usage and suggest that developers can use prediction models to make more informed 

decisions on gas prices. Another study finds that increasing gas prices does not 

significantly reduce the end-to-end latency of Ethereum within a certain range of prices 

[35]. 

Donmez and Karaivanov [36] investigate the economic factors that influence 

transaction fees within the Ethereum blockchain. Through the use of queueing theory 

and empirical analysis, they show that changes in service demand have a significant 

impact on fees. Specifically, when blockchain utilization is high, per-unit fees tend to 

increase on average, with a particularly strong nonlinear effect observed above 90% 

utilization. Additionally, they identify that the type of transaction also plays a crucial 

role in determining the gas price, with a larger proportion of regular transactions (i.e., 

direct transfers between users) being associated with higher gas prices. Another study 

that relies on data from 2018 shows that the number of pending transactions and the 

number of miners have the greatest influence on Ethereum transaction fees when 

compared to the other factors [37].  
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An examination of the impact of transaction fee prices on user activity in blockchain-

enabled decentralized systems, specifically focusing on Decentralized Autonomous 

Organizations (DAOs) found that there is only a minor influence of fee (gas) prices on 

user activity, which is anomalous in a self-regulated market [13]. Focusing on the 

context and impact of the competitive environment among buyers vying for a limited 

supply of tokens offered in initial coin offerings (ICOs), i.e., token sales, Spain et al. 

(2020) indicate that while buyers incentivize miners to prioritize their transactions 

during ICOs, the latency of these transactions is primarily determined by the levels of 

supply and demand in the network. 

Through the collection of information on 7.2 million Ethereum transactions, 

Azevedo Sousa et al.  [10] correlate the pending time of transactions to several fee-

related features and evaluate different ranges of values for these features, including 

default and unusual values adopted by users and clusters of users with similar behaviors. 

The results of the empirical analysis provide strong evidence that there is no clear 

correlation between fee-related features and the pending time of transactions. Therefore, 

the authors conclude that transaction features, including gas and gas prices defined by 

users, cannot determine the pending time of transactions on the Ethereum platform. A 

plethora of other studies analyze, evaluate or forecast gas prices on Ethereum, i.e., how 

fees should ideally be set for the initiation of transactions, and find multiple ways for 

optimization or identify inefficiencies [9], [11], [12], [38]–[43]. 

The Ethereum Improvement Proposal (EIP) 1559 was implemented to improve the 

transaction fee market on Ethereum. The update uses an algorithmic rule with a constant 

learning rate to estimate a base fee, which reflects current network conditions [44], [45]. 

However, research on on-chain data from the period after its launch suggests that EIP-

1559 has led to intense, chaotic oscillations in block sizes and slow adjustments during 

periods of high demand. These phenomena result in unwanted variability in mining 

rewards [46]. To address this issue, Reijsbergen [8] propose an alternative base fee 

adjustment rule which utilizes an additive increase, multiplicative decrease (AIMD) 

update scheme and provide simulations showing that the approach outperforms EIP-

1559. Also referring to limitations of mechanisms such as EIP-1559, Li [47] proposes 

a dynamic posted-price mechanism, which uses not only block utilization but also 

observable bids from past blocks to compute a posted-price for subsequent blocks. The 

goal of this mechanism is to reduce price volatility, and sufficient conditions are 

provided in a probabilistic setting for which it is approximately welfare optimal and 

prices are stable. 

In conclusion, it can be argued that there is a significant amount of ongoing research 

in the area of transaction costs within the Ethereum network. However, the majority of 

this research is concentrated within the field of computer science, specifically focusing 

on identifying optimization opportunities and developing novel approaches. In contrast, 

there exists comparatively limited research from an economic or transaction cost theory 

perspective or research that specifically examines specific economic systems or 

phenomena. This serves as motivation for the above-mentioned research question and 

methodological approach outlined in the subsequent sections. 
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3 Methods and data 

3.1 Economic systems identification 

 To identify the economic systems of the Ethereum network for empirical analysis, a 

rigorous, multivocal exploratory approach is employed. This approach consists of two 

primary steps: 1) an exploratory analysis of non-academic data platforms in the field of 

Ethereum, focusing on addresses or address bundles associated with numerous 

transactions and fees; and 2) a validation of the identified systems through bibliometric 

analyses of the respective topics, determining the relevance of the systems as recognized 

by academic literature. 

 For the initial step, Ethereum and blockchain data providers such as Etherscan  [48], 

Dune Analytics [49], Glassnode [50], and Flipside Crypto [51] are utilized to analyze 

the Ethereum network's status at regular one-week intervals between August 1 and 

November 1, 2022. This analysis aims to identify and document relevant markets, 

wallets, contracts, and estimated transaction costs, resulting in a preliminary overview 

of significant economic systems. For instance, the Ethereum addresses of stablecoins 

Tether (USDT) and USD Coin (USDC) were found to be associated with a high number 

of transactions, thus indicating their substantial economic significance. Consequently, 

the "stablecoins" system was identified and validated based on the abundant academic 

literature on the subject. In contrast, the Ethereum Name Service (ENS), an open 

naming system based on the Ethereum blockchain, represents an atypical case. 

Although on-chain data suggests its relevance as a "system", academic validation is 

currently lacking. As such, ENS may represent a promising area for future research. 

 Table 1 presents a summary of the six identified systems examined in this study, 

accompanied by pertinent academic references for validation purposes. These systems 

include: (a) Bridges, (b) Centralized Exchanges (CEXs), (c) Decentralized Exchanges 

(DEXs), (d) Miner Extractable Value (MEV) bots, (e) Non-Fungible Tokens (NFTs), 

and (f) Stablecoins. It is important to note that this selection is not intended to be a 

comprehensive compilation of every economic system on the Ethereum network, but 

rather a representative sample of systems that are relevant to the research question. 

Given the challenge of comprehensively identifying, extracting data from, and 

analyzing all six economic systems in question, we utilize proxy variables to 

approximate the economic activity of individual systems. Specifically, we employed 

Etherscan’s Ethereum address labeling service, which facilitates the identification and 

classification of prominent actors on the Ethereum blockchain through the assignment 

of account labels. For instance, a roster of all recognized bridges can be accessed 

through the account handle, “bridge” [52]. This approach was replicated for all 

identified economic systems, yielding a range of three to five addresses or contracts as 

proxy variables per system, which are presented in Table 1. These addresses were then 

used to extract data on volumes and distinct active users, which were aggregated to 

compute system-specific data.
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Table 1. Economic systems and proxy addresses on the Ethereum blockchain 

System Description Name Address 
Creation date / 

first transaction 

Number of 

transactions 

Bridges 

Blockchain protocols or platforms 

that allow for interoperability 

between different blockchain 

networks [53]–[62]. 

Axie Infinity: Ronin Bridge 0x1a2a1c938ce3ec39b6d47113c7955baa9dd454f2 Jan 25, 2021 3,090,670 

zkSync 0xabea9132b05a70803a4e85094fd0e1800777fbef Jun 15, 2020 825,134 

Hop Protocol: Ethereum Bridge 0xb8901acb165ed027e32754e0ffe830802919727f Oct 1, 2021 497,580 

Immutable X: Bridge 0x5fdcca53617f4d2b9134b29090c87d01058e27e9 Mar 10, 2021 384,515 

Optimism: Gateway 0x99c9fc46f92e8a1c0dec1b1747d010903e884be1 Jun 22, 2021 300,528 

CEX 

Deposits and withdrawals from 

wallets of centralized crypto asset 

exchanges [63]–[69]. 

Binance Hot Wallet A 0x3f5ce5fbfe3e9af3971dd833d26ba9b5c936f0be Aug 4, 2017 17,017,383 

Binance Hot Wallet B 0x28c6c06298d514db089934071355e5743bf21d60 Apr 22, 2021 11,507,057 

Bittrex Wallet 0xfbb1b73c4f0bda4f67dca266ce6ef42f520fbb98 Aug 10, 2015 11,492,410 

Coinbase Wallet A 0x3cd751e6b0078be393132286c442345e5dc49699 Apr 27, 2021 9,852,269 

Coinbase Wallet B 0xb5d85cbf7cb3ee0d56b3bb207d5fc4b82f43f511 Apr 27, 2021 9,351,971 

DEX 

Decentralized exchanges (DEX) 

which allow for peer-to-peer trading 

of crypto assets [53]–[62]. 

SushiSwap Router 0xd9e1ce17f2641f24ae83637ab66a2cca9c378b9f Sep 4, 2020 4,131,024 

Uniswap v2 Router 0x7a250d5630b4cf539739df2c5dacb4c659f2488d Jun 05, 2020 58,660,014 

Uniswap v3 Router 0xe592427a0aece92de3edee1f18e0157c05861564 May 04, 2021 5,673,190 

MEV 

Bots that exploit market 

inefficiencies to extract profit, 

known as miner extractable value or 

maximal extractable value (MEV) 

[15], [70]–[77]. 

MEV Bot 1 0xa57bd00134b2850b2a1c55860c9e9ea100fdd6cf Mar 26, 2019 3,641,491 

MEV Bot 2 0x0000000000007f150bd6f54c40a34d7c3d5e9f56 Oct 23, 2020 2,327,098 

MEV Bot 3 0x860bd2dba9cd475a61e6d1b45e16c365f6d78f66 Feb 11, 2020 2,175,487 

MEV Bot 4 0x000000000000006f6502b7f2bbac8c30a3f67e9a May 01, 2020 1,438,193 

MEV Bot 5 0x4cb18386e5d1f34dc6eea834bf3534a970a3f8e7 Feb 26, 2021  732,871 

NFTs 

Non-fungible tokens, which are 

unique digital assets that can 

represent ownership of things like 

artwork or collectibles [15], [70]–

[77]. 

Azuki 0xed5af388653567af2f388e6224dc7c4b3241c544 Jan 20, 2022 87,238 

Bored Ape Yacht Club 0xbc4ca0eda7647a8ab7c2061c2e118a18a936f13d Apr 22, 2021 141,249 

CloneX 0x49cf6f5d44e70224e2e23fdcdd2c053f30ada28b Dec 12, 2021 100,589 

Mutant Ape Yacht Club 0x60e4d786628fea6478f785a6d7e704777c86a7c6 Aug 28, 2021 121,620 

CryptoPunks 0xb47e3cd837ddf8e4c57f05d70ab865de6e193bbb Jun 22, 2017 50,630 

Stablecoins 

Crypto assets that are pegged to the 

value of a specific asset, such as the 

US dollar, in order to reduce 

volatility in their value [63], [78]–

[86]. 

BUSD 0x4fabb145d64652a948d72533023f6e7a623c7c53 Sep 05, 2019 1,740,628 

DAI 0x6b175474e89094c44da98b954eedeac495271d0f Nov 13, 2019 16,642,305 

FRAX 0x853d955acef822db058eb8505911ed77f175b99e Dec 16, 2020 575,751 

USDC 0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48 Aug 03, 2018 59,242,016 

USDT 0xdac17f958d2ee523a2206206994597c13d831ec7 Nov 28, 2017 174,406,655 

Notes: Table 1 provides a comprehensive overview of six unique economic systems operating on the Ethereum blockchain, along with their corresponding proxy addresses. The systems 

analyzed encompass Bridges, Centralized Exchanges (CEXs), Decentralized Exchanges (DEXs), Miner Extractable Value (MEV) bots, Non-Fungible Tokens (NFTs), and Stablecoins, 

with data sourced from Etherscan. The table offers a succinct description of each system, the precise proxy address, the inception date or initial transaction, and the total number of 

transactions linked to the address. The table features a concise description of each system, the specific proxy address, the creation date or first transaction, and the aggregate number of 

transactions associated with the address. All transaction data was collected on January 28, 2022.
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3.2 Data 

3.2.1 Transaction fees on the Ethereum blockchain 

We utilize Glassnode [50] as our principal data source to acquire comprehensive time 

series data on transaction costs (fees) within the Ethereum network at daily intervals. 

The dataset covers the period from July 1, 2020, to November 14, 2022, and 

encompasses mean transaction fees in USD. Across all transaction types, the mean daily 

value of fees amounts to $13.18, indicating that they are conceivably "too high" for a 

plethora of applications that necessitate substantial transaction throughput.6 To illustrate 

the behavior of fees over time, we depict the mean fees in USD in both logarithmic form 

and as a first difference in Figure 1. Notably, we find no discernible trend in the 

logarithmic form of the variable. 

 

Figure 1. Transaction fees on the Ethereum blockchain 

Notes: Figure 1 illustrates the transaction fees on the Ethereum blockchain using data obtained from 

Glassnode at daily intervals. The dataset comprises mean transaction fees in USD from July 1, 2020, to 

November 14, 2022. The blue curve represents the logged transaction fees, while the orange curve displays 

the first difference of the transaction fees. 

 To investigate the time series properties of the transaction fee variable, we apply the 

ADFmax unit root test because it accounts for both forward and reverse realizations of 

the variable under scrutiny [87], [88]. We incorporate a constant and trend in the test 

regressions. The selection of lag order is informed by the Akaike Information Criterion 

(AIC), the Schwarz Information Criterion (SIC), and a General-to-Specific algorithm 

[89], [90] with a 5% significance level. The results of the test are displayed in Table 2. 

The unit root tests indicate that fees are optimally represented in first differences, as the 

hypothesis of a unit root cannot be rejected for the log-transformed series.7 

 
6 For comparison purposes, it is noteworthy to mention that PayPal's transaction fee structure involves a 

charge of 5% of the paid amount plus $0.05 [111]. Thus, only transactions exceeding $262 on PayPal 

would surpass the average transaction fee of $13.18 on the Ethereum network. 

7 We validated this result using the KPSS and Augmented Dickey-Fuller test [112]. 
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Table 2. ADFmax test results for time series properties of Ethereum transaction 

fees in USD 

 Log-transformed  First-differenced 

 lags ADFmax p-value  lags ADFmax p-value 

AIC 6 -1.018 0.536  7 -12.233*** 0.000 

SIC 5 -1.196 0.444  4 -19.770*** 0.000 

GTS05 6 -1.018 0.537  7 -12.233*** 0.000 

Notes: Table 2 displays the results of an ADFmax test, incorporating a constant and trend for both log-

transformed and first-differenced transaction fees on the Ethereum blockchain. The data is sourced from 

Glassnode, with daily intervals covering the period between July 1, 2020, and November 14, 2022. The 

untransformed dataset considers mean transaction fees in USD. Significance levels are indicated by *, **, 

and *** for 10%, 5%, and 1%, respectively. 

3.2.2 Underlying economic systems on the Ethereum blockchain 

We utilized Flipside Crypto [51] as a data source to collect daily time series data on 

the economic systems within the Ethereum network. To achieve this, we developed and 

implemented custom application programming interfaces (APIs) for each distinct 

contract or address on the Ethereum blockchain defined in Table 1. These APIs allowed 

us to determine the number of unique active wallets and the corresponding volume, 

measured in USD, associated with transactions. The term "active" denotes a wallet, 

specifically a blockchain address, which partakes directly in a successful transaction. 

Conversely, the term "unique" signifies that addresses are not enumerated multiple 

times, thereby precluding redundancy. Consequently, the metric of unique active wallets 

can serve as a surrogate measure for authentic singular users within the blockchain 

ecosystem. It is imperative to note, however, that the determination of whether a lone 

individual exercises control over multiple unique addresses remains unfeasible. 

Figure 2 presents time series plots for the six identified economic systems, 

showcasing the transacted volume in USD and unique active wallets, both log-

transformed. In the case of the (a) bridge system, a considerable upsurge in volume is 

observed, commencing in July 2021 and reaching its zenith towards the end of 2021 and 

mid-2022. On average, the daily transfer volume via the bridges is slightly above $23 

million, with a highly skewed distribution (standard deviation = $77 million; maximum 

= $1.5 billion). The number of unique active wallets also experiences substantial growth, 

escalating from less than 1,000 to almost 20,000 wallets per day during mid-2021. 

Notwithstanding the subsequent decline in active wallets, it is essential to note that the 

activity levels remain markedly elevated compared to earlier periods, with a peak value 

of 29,793 unique active wallets recorded in June 2022. On average, 2,757 unique wallets 

per day interact with the bridges employed for system calculation, highlighting the 

system's economic significance. 

An analysis of (b) CEX deposit and withdrawal activity in Figure 2 reveals a striking 

growth pattern in volume up to mid-2021, succeeded by a precipitous decline over 

several months and a brief resurgence towards the end of 2022. Subsequently, a 

sustained decrease in average volume emerges. The daily mean economic volume stands 

at $717 million, accompanied by a standard deviation of $686 million, indicating 
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considerable variability in the data. The number of distinct active wallets mirrors the 

volume fluctuations, averaging 25,205 per day and peaking at 590,000 on a single day—

an exceptional outlier. Notably, sporadic short-term user surges in 2022 are ephemeral 

aberrations that do not alter the overarching downward trajectory, reflecting a potential 

shift in user behavior and market dynamics within the centralized exchange ecosystem. 

   

(a) Bridges (b) CEX (c) DEX 

   

(d) MEV (e) NFTs (f) Stablecoins 

Figure 2. Log-transformed transaction fees and unique active wallet users by 

economic system in the Ethereum ecosystem 

Notes: Figure 2 features six plots that display log-transformed activity, with unique active wallets (orange) 

and transacted volume in USD (blue) plotted over time. The systems include (a) Bridges, (b) Centralized 

Exchanges (CEXs), (c) Decentralized Exchanges (DEXs), (d) Miner Extractable Value (MEV) bots, (e) 

Non-Fungible Tokens (NFTs), and (f) Stablecoins. Data is obtained using Flipside Crypto. Custom 

application programming interfaces (APIs) were developed and implemented for each distinct contract or 

address on the Ethereum blockchain, allowing for the determination of unique active wallets and their 

corresponding transaction-associated volumes, measured in USD. 

 

The daily average trading volume for the analyzed (c) DEXes in Figure 2 is estimated 

to be approximately $2.9 billion. A notable expansion in volume transpires from mid-

2020 to mid-2021, succeeded by a brief contraction and subsequent zenith towards the 

end of 2021. However, in the following year, a consistent diminution in volume 

materializes, interspersed with occasional fluctuations, such as a modest upswing in 

October 2022. This pattern may reflect evolving market conditions and user preferences. 

Scrutiny of the number of distinct wallets engaged in DEX transactions uncovers a 

pronounced increase up to mid-2021, when the apex number of unique wallets reached 

105,000. Beyond this juncture, a persistent decline in user engagement manifests, 
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punctuated by sporadic short-lived surges in activity towards the year's end. On average, 

32,144 unique wallets partake in transactions with the DEXes daily throughout the 

examined timeframe, indicating the importance of these platforms within the 

decentralized finance ecosystem. 

The analysis of (d) MEV volume and active wallets data in Figure 2 exhibits 

fluctuations, with a rapid ascent until mid-2021, succeeded by a descent. The average 

daily MEV volume equates to $26.3 million, while the mean unique active wallets 

number 128. A contrasting trend emerges in the unique wallets data, as a sharp upswing 

commences in early 2022, culminating in June 2022 at 513. This development may 

indicate the growing impact of MEV on blockchain security and miner incentives. 

In the realm of (e) NFTs in Figure 2, the examination of the economic system 

commences in April 2021, corresponding with the launch of selected initiatives. The 

average daily trade value for NFT collections amounts to $2.1 million, engaging 64 

distinct active wallets within the network. However, the volume exhibits substantial 

fluctuations (standard deviation = $4.1 million). The NFT volume trend reveals a steep 

incline until mid-2022, paralleled by a similarly sharp decline, reflecting the volatility 

and speculative nature of the NFT market. 

The (f) stablecoins in Figure 2 underscore their significance within the Ethereum 

network, boasting an average daily volume of $22 billion and engaging over 104,000 

unique active wallets. The volume remains relatively stable, punctuated by occasional 

upward outliers. The daily number of stablecoin users consistently surpasses 50,000 

wallets, reaching its zenith of over 200,000 in November 2022, highlighting the 

persistent demand for stablecoins as a medium of exchange and store of value. 

We employ the ADFmax test procedure with constant and trend to investigate the 

time series properties of the identified systems. The presence of unit roots in first 

differences can be rejected for all systems, as illustrated in Table 3. The unit root test 

suggests that the variables are optimally described in first differences—consistent with 

Table 2.8 

 

 

 

 

 

 

 

 

 

 

 
8 We validated this result using the KPSS and Augmented Dickey-Fuller test [112]. 



14 

 

Table 3. ADFmax test results for time series properties of log-transformed 

economic activity by economic system in the Ethereum ecosystem 

  Transaction volume (USD)  Active users 

System  lags ADFmax p-value  lags ADFmax p-value 

(a) Bridges 

AIC 7 -15.85*** 0.000  5 -16.25*** 0.000 

SIC 5 -20.52*** 0.000  2 -22.99*** 0.000 

GTS05 7 -15.85*** 0.000  5 -16.25*** 0.000 

(b) CEX 

AIC 6 17.56*** 0.000  5 -17.75*** 0.000 

SIC 5 23.80*** 0.000  5 -17.75*** 0.000 

GTS05 5 23.80*** 0.000  5 -17.75*** 0.000 

(c) DEX 

AIC 5 -19.85*** 0.000  4 -15.40*** 0.000 

SIC 5 -19.85*** 0.000  1 -25.49*** 0.000 

GTS05 5 -19.85*** 0.000  4 -15.40*** 0.000 

(d) MEV 

AIC 6 -15.84*** 0.000  2 -22.57*** 0.000 

SIC 4 -19.05*** 0.000  2 -22.57*** 0.000 

GTS05 6 -15.84*** 0.000  2 -22.57*** 0.000 

(e) NFTs 

AIC 3 -17.27*** 0.000  3 -19.39*** 0.000 

SIC 0 -33.10*** 0.000  3 -19.39*** 0.000 

GTS05 3 -17.27*** 0.000  3 -13.39*** 0.000 

(f) Stablecoins 

AIC 7 -17.92*** 0.000  7 -12.02*** 0.000 

SIC 6 -20.63*** 0.000  6 -14.03*** 0.000 

GTS05 6 -20.63*** 0.000  6 -14.03*** 0.000 

Note: Table 3 presents the results of an ADFmax test, incorporating a constant and trend for both log-

transformed and first-differenced unique active wallets and transaction volumes in USD across various 

economic subsystems within the Ethereum blockchain. The systems include (a) Bridges, (b) Centralized 

Exchanges (CEXs), (c) Decentralized Exchanges (DEXs), (d) Miner Extractable Value (MEV) bots, (e) 

Non-Fungible Tokens (NFTs), and (f) Stablecoins. Significance levels are denoted by *, **, and *** for 

10%, 5%, and 1% respectively. 

3.3 Empirical approach 

3.3.1 Granger Causality 

Granger causality is a statistical concept that aims to determine the causal 

relationship between two time series variables. The concept of Granger causality states 

that if the past values of variable y1 can be used to predict the current value of variable 

y2, taking into account the past values of y2, then y1 is said to Granger cause y2 [91], 

[92]. The formal approach described in the following is adapted from the method 

described by Baum et al. [93], [94] to analyze the temporal stability of Granger-causal 

relationships. In a bivariate VAR(m) model, y1t and y2t represent economic time series 

of interest.  

𝑦1𝑡 = ∅0
(1)
 ∑ ∅1𝑘

(1)
𝑦1𝑡−𝑘 + ∑ ∅2𝑘

(1)
𝑦2𝑡−𝑘 +

𝑚
𝑘=1

𝑚
𝑘=1 𝜀1𝑡 ,  and (1) 

𝑦2𝑡 = ∅0
(2)
 ∑ ∅1𝑘

(2)
𝑦1𝑡−𝑘 +∑ ∅2𝑘

(2)
𝑦2𝑡−𝑘 +

𝑚
𝑘=1

𝑚
𝑘=1 𝜀2𝑡 ,  (2) 
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The joint significance of multiple parameters is evaluated using a Wald test, 

examining the null hypothesis of no causality from y1 to y2. The system can be reshaped 

in matrix notation, with yt = [y1t y2t]’, xt = [1   y’t-1   y’t-2  …   y’t-k]’, and 

 2x (2m+1) = [0  1  …  m] with 0 = [∅0
(1)
  ∅0
(2)

]’ and 𝑘 = [
∅1𝑘
(1)

∅2𝑘
(1)

∅1𝑘
(2)

∅2𝑘
(2)
]for k 

=1, …, m.  

Thus, the bivariate VAR(m) can be expressed as: 

𝑦𝑡 = 𝑥𝑡 + 𝜀𝑡 . (3) 

The null hypothesis of the absence of causality from y1 to y2 is represented by 

R1→2π = 0, where R1→2 serves as the coefficient restriction matrix and π = vec(). The 

statistic used to evaluate this null hypothesis in the presence of heteroskedasticity is 

referred to as W1→2 and is calculated as 

𝑊1→2 = 𝑇(𝑅1→2π̂)
′, [𝑅1→2(V̂

−1∑̂V̂−1)𝑅1→2
′ ]

−1
(𝑅1→2π̂), (4) 

with V̂ = 𝐼𝑁⊗ Q̂ and Q̂ = 𝑇−1 ∑ 𝑥𝑡𝑥𝑡
′

𝑡  and ∑̂ = 𝑇−1 ∑ 𝜉𝑡𝜉𝑡
′

𝑡 . The termξ𝑡 stands 

for 𝜀̂ ⊗ 𝑥𝑡, with 𝜀𝑡̂ = 𝑦𝑡 − ∏̂𝑥𝑡. 𝐼𝑁 refers to the number of variables in the VAR 

model. 

The framework for testing Granger causality within the context of a VAR model, 

estimated using stationary variables, is augmented to account for the possibility of 

integrated variables. Toda and Yamamoto [95] and Dolado and Lütkepohl [96] suggest 

the use of a Lag-Augmented VAR (LA-VAR) model, which is an extension of the 

original VAR(m) model with the inclusion of d lags to account for the maximum order 

of integration of the variables. The resulting model is represented as VAR(m + d). The 

procedure for conducting a Granger causality test within the framework of a LA-VAR 

model remains unchanged, with the exception that the coefficients associated with the 

additional d lags are not included in the testing restrictions. 

3.3.2 Time-varying Granger Causality 

The validity and robustness of VAR results are often contingent upon the specific 

time period over which the VAR is estimated. This highlights the need for a more 

comprehensive approach when assessing structural stability, as the existence of Granger 

causality between a pair of variables may be supported over one time frame, yet may be 

found to be fragile when alternative periods are considered. Recent literature, such as 

the work of Phillips et al. [97]–[100] has contributed significantly to the field by 

developing methods for detecting and dating financial bubbles. These methods involve 

the use of right-tailed unit root tests in conjunction with date-stamping techniques. 

Subsequently, the concept of Granger causality has been extended by Shi et al. [18], 

[101] to incorporate these techniques, resulting in a more robust approach to assessing 

causality. 
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In order to analyze time-varying Granger causality, recursive estimation methods are 

required. These methods involve computing a sequence of test statistics for each time 

period of interest and using this information for inference. The three algorithms that 

generate this sequence of test statistics are the forward expanding window (FE) [102], 

the rolling window (RO) [103], [104], and the recursive evolving (RE) algorithms [100], 

[101]. These algorithms are illustrated in Figure 3, where each arrow represents a 

subsample over which the test statistic is computed. Given a sample of T+1 

observations, denoted as {y0, y1, … , yT}, and a value r such that 0 < r < 1, the Wald test 

statistic is computed over a subsample starting at y[Tr1] and ending at y[Tr]. 

   

a) Forward expanding window b) Rolling window c) Recursive evolving window 

Figure 3. Sample sequences and window widths 

 Note: Adapted from Phillips et al. [100]. 

The interpretation of causality (or lack thereof) in the results derived from various 

algorithms is predicated on the premise that a minimum of two out of three tests must 

exhibit concordant outcomes. This criterion serves as an indicator of causal influences. 

The application of three distinct tests provides a validation of the robustness of the 

results. 

4 Results 

4.1 Baseline estimation 

Table 4 presents the Wald statistic outcomes and the 95% and 99% thresholds for 

inferring causality among economic systems within the Ethereum ecosystem, including 

(a) bridge volume, bridge activity; (b) CEX volume, CEX activity; (c) DEX volume, 

DEX activity, (d) MEV volume, MEV activity; (e) NFT volume, NFT activity; (f) 

stablecoin volume, and stablecoin activity. The empirical analysis uncovers statistically 

significant bivariate causal interconnections amongst all variables, employing rolling 

(RO) and recursive evolving (RE) algorithms. This highlights the crucial role of various 

forms of economic activities in shaping the Ethereum network's dynamics. In certain 

instances, the forward expanding (FE) algorithm yields statistically insignificant results; 

however, Phillips et al. [100] posit that the forward algorithm exhibits less reliability 

compared to its rolling and recursive counterparts. 
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Table 4. Time-varying Granger causality estimates between economic systems on the 

Ethereum blockchain 

 Forward  Rolling  Recursive 

Direction of causality Wald 95th 99th  Wald 95th 99th  Wald 95th 99th 

(a) Bridges            

Bridge volume 
𝐺𝐶
→  Fees 7.09 8.98 14.18  16.73*** 9.86 15.08  16.81*** 10.19 15.56 

Bridge activity 
𝐺𝐶
→  Fees 17.20*** 9.48 15.63  19.71*** 8.71 15.41  27.63*** 11.03 16.04 

Fees 
𝐺𝐶
→  Bridge volume 4.13 7.19 11.29  15.47*** 7.68 12.87  15.67*** 7.87 12.87 

Fees 
𝐺𝐶
→  Bridge activity 9.19** 6.22 11.92  13.95*** 6.45 11.84  15.89*** 6.82 11.92 

(b) CEX            

CEX volume 
𝐺𝐶
→  Fees 27.05*** 8.17 11.47  31.87*** 9.63 15.32  47.96*** 10.27 15.63 

CEX activity 
𝐺𝐶
→  Fees 3.42 7.39 13.27  46.99*** 8.74 15.85  46.99*** 9.06 16.04 

Fees 
𝐺𝐶
→  CEX volume 52.35*** 7.69 14.42  29.24*** 9.03 13.82  55.79*** 9.29 14.51 

Fees 
𝐺𝐶
→  CEX activity 16.65*** 7.46 11.31  33.49*** 7.65 13.53  33.49*** 7.94 14.51 

(c) DEX            

DEX volume 
𝐺𝐶
→  Fees 9.07** 8.93 15.08  32.20*** 10.62 14.52  32.39*** 10.97 15.46 

DEX activity 
𝐺𝐶
→  Fees 30.77*** 9.07 14.38  29.33*** 9.94 15.47  36.66*** 10.60 15.86 

Fees 
𝐺𝐶
→  DEX volume 17.36*** 9.17 15.60  19.52*** 9.39 17.92  36.40*** 9.70 17.93 

Fees 
𝐺𝐶
→  DEX activity 18.98*** 10.85 16.11  20.69*** 11.97 15.36  22.04*** 11.98 16.17 

(d) MEV            

MEV volume 
𝐺𝐶
→  Fees 13.85** 11.03 23.09  18.27** 15.86 25.40  18.31** 16.65 25.99 

MEV activity 
𝐺𝐶
→  Fees 13.41 13.59 23.09  21.54*** 13.83 24.30  26.06*** 14.58 26.01 

Fees 
𝐺𝐶
→  MEV volume 13.21** 11.36 17.52  20.01*** 12.06 17.01  23.43*** 12.51 17.52 

Fees 
𝐺𝐶
→  MEV activity 8.56 11.20 19.01  21.51*** 11.49 18.74  21.62*** 12.26 19.01 

(e) NFT            

NFT volume 
𝐺𝐶
→  Fees 6.94 8.19 14.33  17.42** 9.03 18.90  17.42** 9.61 18.90 

NFT activity 
𝐺𝐶
→  Fees 11.58** 9.00 12.50  17.67*** 9.03 12.50  23.13*** 9.71 13.40 

Fees 
𝐺𝐶
→  NFT volume 12.57** 10.25 13.79  37.30*** 10.64 13.90  41.21*** 10.67 14.15 

Fees 
𝐺𝐶
→  NFT activity 12.39 12.82 16.16  36.77*** 13.02 17.99  38.66*** 13.46 17.99 

(f) Stablecoins            

Stablecoin volume 
𝐺𝐶
→  Fees 9.36*** 7.05 9.31  11.52** 8.03 11.79  16.79*** 8.07 12.92 

Stablecoin activity 
𝐺𝐶
→  Fees 13.12** 12.49 16.90  26.84*** 13.83 20.67  40.98*** 14.50 20.67 

Fees 
𝐺𝐶
→  Stablecoin volume 9.07** 8.58 11.28  23.61*** 8.55 11.73  36.78*** 8.93 11.90 

Fees 
𝐺𝐶
→  Stablecoin activity 41.55*** 7.43 12.84  18.11*** 9.86 13.66  43.56*** 9.14 13.66 

Notes: Table 4 presents the robust Wald test statistics for Granger causality tests, with the 95th and 99th quantiles of the 

empirical distributions based on 499 bootstrap replications. *, **, and *** for 10%, 5%, and 1% respectively. 

4.2 Bridges 

The interplay between bridge utilization and transaction fees constitutes a subject of 

considerable interest within the domain of blockchain economics. Blockchain bridges, 

as technological solutions, enable interoperability among disparate blockchain 
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networks. The connection between these bridges and the Ethereum network may be 

subject to various influences, such as a potential decline in Ethereum network activity 

attributable to high bridge usage, or a fee increase driven by elevated demand for bridge 

services. It is reasonable to anticipate that blockchain bridges affect Ethereum 

transaction fees by alleviating network congestion, fostering competition among 

blockchain networks, facilitating transaction fee arbitrage opportunities, and promoting 

layer 2 scaling solutions. Intuitively, higher fees may prompt certain users to explore 

alternative, low-fee blockchain network options, while a fee reduction could, in theory, 

entice certain users to re-join the Ethereum network. Nevertheless, the migration process 

could culminate in the permanent departure of projects or users, as they may be reluctant 

to face the risk of potential future fee hikes and the associated need for subsequent 

migration, or they might simply be content with another blockchain network. The 

presence of bridging services and solutions, such as Axie Infinity's Ronin Bridge, 

exemplifies the correlation between transaction costs and migration within the 

blockchain ecosystem. The Ronin Bridge, for instance, is a smart contract that allows 

users of the NFT or play-to-earn game Axie Infinity to transition to the Ronin sidechain, 

which was primarily established due to the elevated transaction costs on the Ethereum 

network [7].  

The results of the time-varying Granger causality analysis between bridge 

transaction volume, activity, and mean fees in the Ethereum network, are illustrated in 

Figure 4. The dashed lines denote the critical values of bootstrapped test statistics at the 

90% and 95% levels. A Granger curve positioned above these lines indicates the 

presence of significant causal relationships in the context of Ethereum transaction fees. 

Figure 4 reveals that Ethereum fees generally exert a Granger-causal influence on bridge 

activity over time (Figure 4, panels d, h, l). This suggests that fluctuations in fees directly 

impact user behavior on bridges. Notably, a feedback loop is observed, as bridge activity 

also exhibits a Granger-causal effect on Ethereum fees until Q2 of 2022 (Figure 4, panels 

b, f, j). This observation implies that users may have migrated to alternative blockchains, 

consequently weakening the causal relationship between these variables–consistent with 

our expectation. Despite a notable decrease in average fees over the sample period (see 

Figure 1), the causal influence of fees on bridge activity seems persisted throughout 

much of the sample (Figure 4, panels b, j). This observation suggests that the fees in the 

Ethereum network, despite being comparatively low, may not be competitive enough in 

comparison to other networks and layer-2 solutions, leading to a continued churn in the 

network. In contrast, the analysis generally does not reveal significant causal effects of 

Ethereum fees on bridge transaction volume (Figure 4, panels c, g, k). The findings 

concerning the causal impact of bridge transaction volume on Ethereum fees also yield 

mixed results (Figure 4, panels a, e, i). 
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(a) Bridge volume 
𝐺𝐶
→  ETH fees (FE) (b) Bridge activity 

𝐺𝐶
→  ETH fees (FE) (c) ETH fees 

𝐺𝐶
→  Bridge volume (FE) (d) ETH fees 

𝐺𝐶
→  Bridge activity (FE) 

    

(e) Bridge volume 
𝐺𝐶
→  ETH fees (RO) (f) Bridge activity 

𝐺𝐶
→  ETH fees (RO) (g) ETH fees 

𝐺𝐶
→  Bridge volume (RO) (h) ETH fees 

𝐺𝐶
→  Bridge activity (RO) 

    

(i) Bridge volume 
𝐺𝐶
→  ETH fees (RE) (j) Bridge activity 

𝐺𝐶
→  ETH fees (RE) (k) ETH fees 

𝐺𝐶
→  Bridge volume (RE) (l) ETH fees 

𝐺𝐶
→  Bridge activity (RE) 

Figure 4. Time-varying Granger causality tests for bridge volume, activity and mean fees in the Ethereum network 

Notes: Figure 4 displays the bivariate results derived from forward expanding (FE), rolling (RO), and recursive evolving (RE) algorithms using the time-varying Granger causality model developed by Baum et al. [93], 

[94]. The analysis employs the Lag-Augmented Vector Autoregression (LA-VAR) model proposed by Toda and Yamamoto [95] and Dolado and Lütkepohl [96]. The sample period spans from July 1, 2020, to November 
14, 2022, with a minimum window size set at 20% of the sample. Models incorporate four augmented lags and a trend. Dashed lines represent the critical values of bootstrapped test statistics at the 90% and 95% 

significance levels. The results are robust to heteroskedasticity. 
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4.3 Centralized exchanges (CEX) 

The relationship between CEX hot wallet movements and Ethereum transaction fees 

can be delineated through an examination of several distinct factors such as network 

congestion, arbitrage opportunities, and exchange operations. Network congestion 

arises when CEXs process numerous transactions, increasing demand for block space 

on the Ethereum blockchain and intensifying competition for transaction processing. In 

addition, arbitrage opportunities are created due to price discrepancies between CEXs 

and other exchanges or DEXs, prompting traders to buy low on one exchange and sell 

high on another. These activities require asset transfers between wallets, contributing to 

hot wallet movements and higher transaction fees. Additionally, CEXs routinely transfer 

funds between their hot and cold wallets for security and operational purposes, further 

impacting Ethereum transaction fees. 

The time-varying Granger causality analysis between CEX transaction volume, 

activity, and mean fees in the Ethereum network, as depicted in Figure 5, reveals a 

mutual interaction between the variables. Ethereum fees generally exert a Granger-

causal influence on CEX transaction volume, with the causal effect growing in statistical 

significance over time (Figure 5, panels c, g, k). A feedback loop is also observed, as 

CEX transaction volumes typically Granger-cause Ethereum fees (Figure 5, panels a, e, 

i). This suggests that as CEX transaction volume increases, it spurs heightened demand 

for block space and greater competition among users for transaction processing. 

Consequently, users are willing to pay higher gas fees to expedite their transactions, 

driving up average Ethereum transaction fees. When Ethereum transaction fees increase, 

they affect trading and transferring costs on CEXs, influencing user behavior. This may 

incentivize traders to engage in more high-value transactions, leading to a rise in CEX 

transaction volume and reinforcing the causal relationship between Ethereum fees and 

CEX transaction volume. The presence of a feedback loop indicates that market 

participants closely monitor the interplay between Ethereum transaction fees and CEX 

transaction volume, transacting more on CEXs in response to increasing Ethereum fees 

to capitalize on arbitrage opportunities or market volatility. This, in turn, contributes to 

network congestion and further elevates Ethereum transaction fees in a self-reinforcing 

cycle. Overall, the analysis uncovers a bidirectional relationship between CEX 

transaction volume and Ethereum fees that strengthens over time, driven primarily by 

supply and demand dynamics for block space on the Ethereum network and the strategic 

behavior of market participants in response to fluctuating transaction costs.
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(a) CEX volume 
𝐺𝐶
→  ETH fees (FE) (b) CEX activity 

𝐺𝐶
→  ETH fees (FE) (c) ETH fees 

𝐺𝐶
→  CEX volume (FE) (d) ETH fees 

𝐺𝐶
→  CEX activity (FE) 

    

(e) CEX volume 
𝐺𝐶
→  ETH fees (RO) (f) CEX activity 

𝐺𝐶
→  ETH fees (RO) (g) ETH fees 

𝐺𝐶
→  CEX volume (RO) (h) ETH fees 

𝐺𝐶
→  CEX activity (RO) 

    

(i) CEX volume 
𝐺𝐶
→  ETH fees (RE) (j) CEX activity 

𝐺𝐶
→  ETH fees (RE) (k) ETH fees 

𝐺𝐶
→  CEX volume (RE) (l) ETH fees 

𝐺𝐶
→  CEX activity (RE) 

Figure 5. Time-varying Granger causality tests for CEX volume, activity and mean fees in the Ethereum network.  

Notes: Figure 5 displays the bivariate results derived from forward expanding (FE), rolling (RO), and recursive evolving (RE) algorithms using the time-varying Granger causality model developed by Baum et al. [93], 

[94]. The analysis employs the Lag-Augmented Vector Autoregression (LA-VAR) model proposed by Toda and Yamamoto [95] and Dolado and Lütkepohl [96]. The sample period spans from July 1, 2020, to November 

14, 2022, with a minimum window size set at 20% of the sample. Models incorporate four augmented lags and a trend. Dashed lines represent the critical values of bootstrapped test statistics at the 90% and 95% 

significance levels. The results are robust to heteroskedasticity. 
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4.4 Decentralized exchanges (DEX) 

DEXs enable peer-to-peer trading of digital assets without a centralized intermediary 

by leveraging smart contracts and automated market-making protocols, fostering direct, 

trustless transactions between participants. User activity on DEXs is influenced by 

factors such as market sentiment, profitable trading opportunities, and the expansion of 

the decentralized finance (DeFi) ecosystem. As user activity and transaction volumes 

increase, the demand for limited resources on the underlying blockchain network rises, 

intensifying competition for block space and leading to higher transaction fees. In this 

context, elevated transaction fees on networks like Ethereum may deter DEX users from 

conducting trades or interacting with decentralized applications (dApps), causing a 

decline in transaction volumes and user activity until fees revert to more acceptable 

levels. Conversely, reduced transaction fees on Ethereum may incentivize users to 

engage in trades and other activities on DEXs, thereby boosting transaction volumes and 

user activity. Ultimately, the interplay between transaction volumes, user activity on 

DEXs, and Ethereum transaction fees reflects a dynamic relationship, with increased 

demand for network resources contributing to fluctuating transaction fees. 

The time-varying Granger causality analysis, presented in Figure 6, explores the 

relationship between DEX transaction volumes, activity, and mean fees in the Ethereum 

network. The results reveal that, from Q3 2022 onwards, DEX transaction volumes 

generally Granger-caused Ethereum transaction fees (Figure 6, panels e and i). Over the 

same period, Ethereum transaction fees did not consistently exhibit a Granger-causal 

effect on DEX transaction volumes (Figure 6, panels c, g, k), although sporadic instances 

of Granger causality between Ethereum transaction fees and DEX activity are observed 

(Figure 6, panels d, h, l). The Granger-causal relationship between DEX volume and 

Ethereum transaction fees can be attributed to the increasing utilization of DEXs, which 

amplifies demand for limited resources on the Ethereum blockchain network. 

Consequently, escalating transaction fees are driven by heightened competition for 

block space due to increased user activity and transaction volumes on DEXs. However, 

the lack of a consistent Granger-causal relationship between Ethereum transaction fees 

and DEX volumes suggests that multiple factors, such as market sentiment, trading 

opportunities, and the expansion of the DeFi ecosystem, influence users' behavior 

beyond transaction fees alone. Therefore, the impact of transaction fees on DEX 

volumes is more nuanced, with external factors potentially playing a more significant 

role in determining DEX activity. The occasional instances where Ethereum transaction 

fees Granger-cause DEX activity emphasize the complex and dynamic nature of the 

relationship between Ethereum transaction fees and DEX activity, highlighting periods 

when elevated transaction fees might have a more pronounced influence on user 

behavior, discouraging users from engaging with DEXs and causing a decline in 

transaction volumes and user activity. 
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(a) DEX volume 
𝐺𝐶
→  ETH fees (FE) (b) DEX activity 

𝐺𝐶
→  ETH fees (FE) (c) ETH fees 

𝐺𝐶
→  DEX volume (FE) (d) ETH fees 

𝐺𝐶
→  DEX activity (FE) 

    

(e) DEX volume 
𝐺𝐶
→  ETH fees (RO) (f) DEX activity 

𝐺𝐶
→  ETH fees (RO) (g) ETH fees 

𝐺𝐶
→  DEX volume (RO) (h) ETH fees 

𝐺𝐶
→  DEX activity (RO) 

    

(i) DEX volume 
𝐺𝐶
→  ETH fees (RE) (j) DEX activity 

𝐺𝐶
→  ETH fees (RE) (k) ETH fees 

𝐺𝐶
→  DEX volume (RE) (l) ETH fees 

𝐺𝐶
→  DEX activity (RE) 

Figure 6. Time-varying Granger causality tests for DEX volume, activity and mean fees in the Ethereum network.  

Notes: Figure 6 displays the bivariate results derived from forward expanding (FE), rolling (RO), and recursive evolving (RE) algorithms using the time-varying Granger causality model developed by Baum et al. [93], 

[94]. The analysis employs the Lag-Augmented Vector Autoregression (LA-VAR) model proposed by Toda and Yamamoto [95] and Dolado and Lütkepohl [96]. The sample period spans from July 1, 2020, to November 
14, 2022, with a minimum window size set at 20% of the sample. Models incorporate four augmented lags and a trend. Dashed lines represent the critical values of bootstrapped test statistics at the 90% and 95% 

significance levels. The results are robust to heteroskedasticity.
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4.5 Miner extractable value (MEV) 

Prior to the Merge, Miner Extractable Value (MEV) referred to the additional value 

that could be obtained by miners in a proof-of-work (PoW) consensus mechanism by 

strategically including, excluding, or ordering transactions in a block. After the Merge, 

when Ethereum transitioned to a proof-of-stake (PoS) consensus mechanism, the term 

Maximal Extractable Value replaced Miner Extractable Value. In this new context, 

validators took on the role of managing transaction inclusion, exclusion, and ordering, 

as opposed to miners. Although the terminology and consensus mechanism changed, 

the core concept of extracting additional value from block production beyond standard 

block rewards and transaction fees remained consistent. 

The interrelation between MEV activity, characterized by the number of searchers 

pursuing profitable opportunities, and Ethereum transaction fees is driven by the 

competitive nature of MEV extraction. Heightened MEV activity intensifies 

competition for transaction inclusion in blocks, prompting searchers to offer higher gas 

fees to validators to increase the likelihood of their transactions being included and, 

consequently, raising the MEV rewards. This competitive bidding process results in 

elevated Ethereum transaction fees. Moreover, MEV transaction volumes, representing 

the cumulative value derived from MEV opportunities, play a significant role in 

determining Ethereum transaction fees. As MEV transaction volumes grow, searchers 

are drawn to the potential rewards, exacerbating competition and driving gas prices 

upward. In highly competitive MEV scenarios, such as DEX arbitrage, searchers may 

allocate up to 90% or more of their total MEV revenue to gas fees to ensure transaction 

inclusion in a block  [105]. Furthermore, the deployment of generalized frontrunner bots 

by some searchers adds to the competitive environment for transaction inclusion. These 

bots monitor the Mempool for lucrative transactions, replicate transaction codes, replace 

addresses with their own, and resubmit the modified transaction with higher gas prices. 

This frontrunning phenomenon contributes to increased Ethereum transaction fees by 

further intensifying the competition for transaction inclusion. 

The time-varying Granger causality analysis, presented in Figure 7, explores the 

relationship between MEV transaction volumes, activity, and mean fees in the Ethereum 

network. The results reveal that, from Q1 2022, Ethereum transaction fees generally 

Granger-caused MEV activity (Figure 7, panels h, l). However, from Q2 2022 onwards, 

the Granger-causal influence of Ethereum transaction fees on MEV activity (Figure 7, 

panels c, g, k) weakened in significance. Likewise, the impact of MEV activity (Figure 

7, panels a, e, i) and volume (Figure 7, panels b, f, j) on Ethereum transaction fees also 

declined in significance from Q2 2022 onwards. This reduction in significance could be 

attributed to several factors, such as the emergence of alternative value extraction 

methods, changes in searcher strategies, or adaptations in the Ethereum ecosystem. 

Additionally, market participants might have adjusted their behaviors in response to the 

evolving dynamics of MEV opportunities and transaction fees, leading to new 

equilibrium points in the competitive landscape.
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(a) MEV volume 
𝐺𝐶
→  ETH fees (FE) (b) MEV activity 

𝐺𝐶
→  ETH fees (FE) (c) ETH fees 

𝐺𝐶
→  MEV volume (FE) (d) ETH fees 

𝐺𝐶
→  MEV activity (FE) 

    

(e) MEV volume 
𝐺𝐶
→  ETH fees (RO) (f) MEV activity 

𝐺𝐶
→  ETH fees (RO) (g) ETH fees 

𝐺𝐶
→  MEV volume (RO) (h) ETH fees 

𝐺𝐶
→  MEV activity (RO) 

    

(i) MEV volume 
𝐺𝐶
→  ETH fees (RE) (j) MEV activity 

𝐺𝐶
→  ETH fees (RE) (k) ETH fees 

𝐺𝐶
→  MEV volume (RE) (l) ETH fees 

𝐺𝐶
→  MEV activity (RE) 

Figure 7. Time-varying Granger causality tests for MEV volume, activity and mean fees in the Ethereum network 

Notes: Figure 7 displays the bivariate results derived from forward expanding (FE), rolling (RO), and recursive evolving (RE) algorithms using the time-varying Granger causality model developed by Baum et al. [93], 

[94]. The analysis employs the Lag-Augmented Vector Autoregression (LA-VAR) model proposed by Toda and Yamamoto [95] and Dolado and Lütkepohl [96]. The sample period spans from July 1, 2020, to November 
14, 2022, with a minimum window size set at 20% of the sample. Models incorporate four augmented lags and a trend. Dashed lines represent the critical values of bootstrapped test statistics at the 90% and 95% 

significance levels. The results are robust to heteroskedasticity. 
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4.6 Non-fungible tokens (NFTs) 

NFTs represent a novel class of digital assets, characterized by their unique and non-

interchangeable properties, which distinguish them from fungible tokens such as 

cryptocurrencies. Primarily developed on the Ethereum blockchain utilizing ERC-721 

or ERC-1155 token standards, NFTs enable the tokenization of a diverse range of digital 

and physical assets, including digital art, collectibles, virtual real estate, and tangible 

goods. As NFT transactions contribute to the overall transaction volume on the 

Ethereum network, escalating NFT transaction volumes and non-fungible user activity, 

which encompass actions like minting, trading, and transferring NFTs, can intensify 

network congestion. During periods of high demand, competition for limited block 

space heightens, leads users to offer higher gas prices and subsequently drive up 

Ethereum transaction fees. The notable influence of NFT volume on fees in April and 

September 2022 can be ascribed to speculative bubbles prevalent in the NFT market, as 

corroborated by literature [112], [113]. 

 The time-varying Granger causality analysis between NFT transaction volume, 

activity, and mean fees in the Ethereum network, is presented in Figure 8. Estimates 

reveal that Ethereum transaction fees primarily Granger-caused NFT activity (Figure 8, 

panels h, l) and transaction volumes (Figure 8, panels g, k) between Q4 2021 and Q1 

2022. One possible interpretation of this causal relationship is that higher transaction 

fees might have served as a barrier to entry for some users, discouraging them from 

engaging in NFT-related activities and leading to reduced transaction volumes. 

Conversely, lower transaction fees may have acted as a catalyst for NFT user activity, 

incentivizing users to participate in minting, trading, and transferring NFTs, thereby 

increasing transaction volumes. However, the evidence for NFT user activity (Figure 8, 

panels f, j) or transaction volume (Figure 8, panels a, e, i) Granger-causing Ethereum 

transaction fees are mixed, suggesting a more nuanced causal relationship. This absence 

of a consistent causal link may be attributed to various confounding factors impacting 

Ethereum transaction fees, such as network capacity, miner preferences, and the overall 

transaction demand on the Ethereum network. For instance, a surge in non-NFT-related 

transactions may have led to increased network congestion, subsequently driving up 

transaction fees, independent of NFT user activity or transaction volume.
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(a) NFT volume 
𝐺𝐶
→  ETH fees (FE) (b) NFT activity 

𝐺𝐶
→  ETH fees (FE) (c) ETH fees 

𝐺𝐶
→  NFT volume (FE) (d) ETH fees 

𝐺𝐶
→  NFT activity (FE) 

    

(e) NFT volume 
𝐺𝐶
→  ETH fees (RO) (f) NFT activity 

𝐺𝐶
→  ETH fees (RO) (g) ETH fees 

𝐺𝐶
→  NFT volume (RO) (h) ETH fees 

𝐺𝐶
→  NFT activity (RO) 

    

(i) NFT volume 
𝐺𝐶
→  ETH fees (RE) (j) NFT activity 

𝐺𝐶
→  ETH fees (RE) (k) ETH fees 

𝐺𝐶
→  NFT volume (RE) (l) ETH fees 

𝐺𝐶
→  NFT activity (RE) 

Figure 8. Time-varying Granger causality tests for NFT volume, activity and mean fees in the Ethereum network 

Notes: Figure 8 displays the bivariate results derived from forward expanding (FE), rolling (RO), and recursive evolving (RE) algorithms using the time-varying Granger causality model developed by Baum et al. [93], 
[94]. The analysis employs the Lag-Augmented Vector Autoregression (LA-VAR) model proposed by Toda and Yamamoto [95] and Dolado and Lütkepohl [96]. The sample period spans from July 1, 2020, to November 

14, 2022, with a minimum window size set at 20% of the sample. Models incorporate four augmented lags and a trend. Dashed lines represent the critical values of bootstrapped test statistics at the 90% and 95% 

significance levels. The results are robust to heteroskedasticity. 
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4.7 Stablecoins 

Stablecoins are a type of cryptocurrency designed to maintain a stable value by 

pegging their value to a reserve of assets, such as fiat currencies, commodities, or other 

cryptocurrencies. These digital assets provide users with the benefits of 

cryptocurrencies, such as fast and secure transactions, while minimizing the price 

volatility typically associated with them. As stablecoin transaction volumes and user 

activity increase, the demand for processing these transactions on the Ethereum 

blockchain grows, leading to higher transaction fees. This is due to the limited 

throughput capacity of the Ethereum network, which can only process a certain number 

of transactions per second. As more users compete for this limited resource, they are 

willing to pay higher fees to ensure their transactions are processed in a timely manner. 

Consequently, higher stablecoin transaction volumes and user activity contribute to 

increased Ethereum transaction fees, reflecting the network's scarcity of processing 

capacity and the competitive nature of the market for blockchain transaction processing. 

The time-varying Granger causality analysis between stablecoin transaction volume, 

user activity, and mean fees in the Ethereum network, as shown in Figure 8, reveals 

intriguing insights into the interdependencies between these factors. Our findings 

indicate that Ethereum transaction fees significantly Granger-caused stablecoin user 

activity (Figure 9, panels d, h, l) and transaction volume (Figure 9, panels g, k). 

Additionally, the recursive evolving (RE) algorithm detected a highly significant shift 

in Granger-causal directionality from Q2 2022 onwards, with stablecoin user activity 

(Figure 9, panel j) and transaction volume (Figure 9, panel i) Granger-causing Ethereum 

transaction fees. This feedback loop suggests a bidirectional causality which can be 

ascribed to the growing prominence and adoption of stablecoins within the 

cryptocurrency ecosystem. The increasing influence of stablecoins on the Ethereum 

network led to heightened transaction demand, consequently driving up Ethereum 

transaction fees. These findings highlight the complex relationships between stablecoin 

dynamics and the Ethereum network as they continue to shape the evolving 

cryptocurrency market landscape. 

 



29 

 

 

    

(a) Stablecoin volume 
𝐺𝐶
→  ETH fees (FO) (b) Stablecoin activity 

𝐺𝐶
→  ETH fees (FO) (c) ETH fees 

𝐺𝐶
→  Stablecoin volume (FE) (d) ETH fees 

𝐺𝐶
→  Stablecoin activity (FE) 

    

(e) Stablecoin volume 
𝐺𝐶
→  ETH fees (RO) (f) Stablecoin activity 

𝐺𝐶
→  ETH fees (RO) (g) ETH fees 

𝐺𝐶
→  Stablecoin volume (v) (h) ETH fees 

𝐺𝐶
→  Stablecoin activity (RO) 

    

(i) Stablecoin volume 
𝐺𝐶
→  ETH fees (RE) (j) Stablecoin activity 

𝐺𝐶
→  ETH fees (RE) (k) ETH fees 

𝐺𝐶
→  Stablecoin volume (RE) (l) ETH fees 

𝐺𝐶
→  Stablecoin activity (RE) 

Figure 9. Time-varying Granger causality tests for stablecoin volume, activity and mean fees in the Ethereum network 

Notes: Figure 9 displays the bivariate results derived from forward expanding (FE), rolling (RO), and recursive evolving (RE) algorithms using the time-varying Granger causality model developed by Baum et al. [93], 

[94]. The analysis employs the Lag-Augmented Vector Autoregression (LA-VAR) model proposed by Toda and Yamamoto [95] and Dolado and Lütkepohl [96]. The sample period spans from July 1, 2020, to November 

14, 2022, with a minimum window size set at 20% of the sample. Models incorporate four augmented lags and a trend. Dashed lines represent the critical values of bootstrapped test statistics at the 90% and 95% 

significance levels. The results are robust to heteroskedasticity. 
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5 Discussion and conclusions 

Transaction costs represent a critical component of economic exchanges within 

blockchain ecosystems such as Ethereum, where they arise from actions like transferring 

the native cryptocurrency Ether or implementing smart contract operations. Within the 

Ethereum network, transaction costs (i.e., gas fees) remunerate the computational effort 

required to process transactions. A comprehensive grasp of these costs and their inherent 

dynamics is crucial, as transaction costs underpin all economic activities occurring 

within blockchain ecosystems like Ethereum. Moreover, these costs significantly 

influence the system's behavior and determine the feasibility of various economic 

endeavors. Therefore, an in-depth understanding of transaction costs in blockchain 

networks is indispensable for informed decision-making and the judicious exploitation 

of these advanced technological frameworks. 

This study investigates the relationship between transaction fees within the Ethereum 

blockchain network and various economic subsystems that leverage the network, 

encompassing: (a) Bridges; (b) CEXs; (c) DEXs; (d) MEV bots; (e) NFTs; (f) 

Stablecoins. Through the application of a dynamic Granger causality analysis, the study 

unveils intricate, interconnected causal interdependencies between the transaction costs 

of the Ethereum network and its economic activities across these subsystems. The 

complexity of these relationships can likely be attributed to the direct influence of 

transaction costs on users' incentives to engage in economic transactions within the 

network. 

Considering the analysis of the six discrete economic subsystems discussed in this 

paper, specific implications for each can be discerned: 

• For bridges, the results reveal a bidirectional causality between the number of 

unique active wallets associated with bridge protocols and the mean transaction 

fees within the Ethereum network. The observed attenuation of this feedback loop 

intimates a possible migration of users towards alternative blockchain 

infrastructures. Despite the considerable decrease in transaction fees over the 

analyzed duration, it underscores Ethereum's diminished competitiveness in 

comparison to other blockchain networks and layer-2 solutions. These insights 

emphasize the pivotal role of transaction fees in influencing user migration trends 

and the ensuing necessity for judicious oversight. Within the more extensive 

domain of network economics, it highlights the exigency for continued 

examination of the causal interplay between transaction fees and bridge activity, in 

addition to the pursuit of viable strategies to counteract any detrimental 

repercussions arising from this relationship. 

• For Ethereum network stakeholders, the findings highlight the crucial role of CEX 

deposits and withdrawals in the fee network's operation. The strengthening, 

bidirectional Granger-causal relationship Ethereum fees and CEX transaction 

volume is underpinned by a feedback loop. This suggests that increasing CEX 

transaction volume catalyzes demand for block space and transaction processing 
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competition, resulting in higher gas fees. This, in turn, influences trading and 

transferring costs on CEXs, prompting users to pursue high-value transactions, 

thereby reinforcing the causal nexus. Market participants may also monitor this 

interplay, capitalizing on arbitrage opportunities or market volatility, and 

perpetuating a self-reinforcing cycle of network congestion and escalating fees. 

This dynamic is influenced by supply and demand for block space and strategic 

responses to transaction costs, contributing valuable insights to the literature on 

centralized exchanges and decentralized blockchain networks [63], [67], [106]. 

• The causal spillover analysis between DEX volume, DEX users, and network fees 

illuminates the interplay among these three elements in the Ethereum network. The 

findings suggest that an increase in DEX volume causally influence higher fees, 

which subsequently have a significant causal influence on the DEX user counts. 

Over time, this relationship weakens, likely due to the diminished economic 

significance of the DeFi system (i.e., bubbles) [107], [108]. However, decreasing 

fees positively impact the DEX user counts by rendering smaller trades 

economically viable again. Future scholarly inquiry is required to validate these 

postulations. For Ethereum network stakeholders, these findings underscore the 

need for DEXes to balance the trade-off between attracting more users and 

ensuring manageable fees, thus explaining why, e.g., Uniswap and SushiSwap also 

launched on other blockchain networks [109] and continue to explore this option 

[110]. Furthermore, DEXs need to consider the impact of fees on their user base 

when making fee-related decisions (i.e., network fees, not DEX-specific 

transaction fees). Additionally, the decline in fees' significance over time suggests 

that the impact of fees on users may differ depending on the economic context. 

• A discernible causal linkage between Ethereum network fees and MEV 

volume/activity emerges during certain periods, signifying the intermittent 

importance of MEV within the Ethereum ecosystem. This phenomenon may be 

ascribed to elements such as the advent of alternative value-extraction approaches, 

alterations in searcher tactics, or adjustments in the Ethereum environment. 

Furthermore, market actors may have recalibrated their actions in response to the 

shifting interplay between MEV prospects and transaction fees, culminating in 

novel equilibrium points within the competitive arena. Subsequent investigations 

may consider delving into the potential ramifications of additional MEV market 

participants by employing a more exhaustive data set, as the current findings, 

predicated on the activities of five eminent MEV bots, may not encompass the 

entirety of the MEV market landscape.9 

 
9 In interpreting the results, it is vital to recognize the presence of survivorship bias within the underlying 

data. This bias arises from the consideration of only successful and valuable NFT collections (e.g., the five 

selected in this study), while numerous less successful or failed projects are excluded. These overlooked 

projects may constitute a larger market share and exhibit a distinct relationship with network fees. 

Consequently, the findings should not be generalized to the entire NFT market but rather pertain 

specifically to the upper echelon. This limitation extends to the analysis of MEV bots as well. 
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• The analysis highlights a sophisticated causal interplay among NFT volume, NFT 

activity, and Ethereum network fees, where speculative bubbles may have 

significantly impacted relationships [107], [108]. Results show that fees causally 

influenced NFT activity and transaction volumes. This causal relationship can be 

interpreted as heightened fees acting as an entry barrier for users, discouraging 

(encouraging) NFT participation and resulting in reduced (increased) transaction 

volumes. Nonetheless, the evidence for the causal influence of NFT user activity 

or transaction volume on fees is not definitive, indicating a complex causal 

interplay. The lack of a consistent causal connection may be due to several 

confounding factors, such as network capacity, miner preferences, and overall 

transaction demand, with non-NFT-related transactions potentially exacerbating 

network congestion and raising fees independently of NFT activity or volume. 

• Findings indicate that Ethereum transaction fees causally influenced stablecoin 

user activity and transaction volumes. Furthermore, evidence suggests a shift in 

causal directionality commencing from Q2 2022, wherein stablecoin user activity 

and transaction volume causally impacted transaction fees. This feedback 

mechanism infers a bidirectional causality, attributable to the burgeoning 

prominence and adoption of stablecoins within the cryptocurrency domain. The 

escalating influence of stablecoins on the Ethereum network precipitated 

heightened transaction demand, consequently leading to an increase in Ethereum 

transaction fees. These findings underscore the complex interdependencies 

between stablecoin dynamics and the Ethereum network as they collaboratively 

mold the dynamic cryptocurrency market landscape. 

The findings of this study indicate that transaction fees serve as a significant causal 

determinant for nearly all investigated subsystems, and the activity and volume of 

numerous subsystems causally influence the overall network fees. Nevertheless, it is 

essential to recognize the dynamic character of causality, which undergoes change over 

time and is plausibly attributable to various factors meriting additional exploration. By 

analyzing the activity and transaction volumes of each subsystem in conjunction with a 

time-varying Granger causality methodology, the causal spillover directions and 

temporal heterogeneity within the Ethereum network are discerned. This research 

presents a holistic evaluation of the interactions between Ethereum on-chain metrics 

across multiple economic subsystems, emphasizing causal spillover effects and 

temporal heterogeneity. The assessment of temporal variability uncovers a dynamic 

pattern of bidirectional causality between fees and primary economic markets, 

illustrating the evolving nature of these interactions across distinct timeframes. 

The results of this investigation further corroborate the prevailing literature's 

assertion that the recursive evolving algorithm for detecting time-varying Granger 

causality produces superior and economically defensible outcomes, in alignment with 

the findings of other studies employing the same methodology [19]. Conversely, the 

forward algorithm demonstrates the lowest level of detection precision, indicative of its 

incapacity to capture the most persistent causal relationships within the designated 

sample duration. 
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In conclusion, it is crucial to acknowledge that the current paper does not provide an 

exhaustive analysis of the interactions between the examined variables. Additional 

research is necessary to ascertain the precise effects between fees and on-chain metrics, 

encompassing the number of unique active wallets and the extent of transaction volume. 

This study serves as a foundation for future inquiries to enhance the understanding of 

transaction cost dynamics within blockchain networks, such as Ethereum, and the 

implications for a range of stakeholders, including users, developers, and policymakers. 

By illuminating the intricate relationships between transaction fees and diverse 

economic systems on the Ethereum network, this research contributes to the burgeoning 

literature on blockchain networks, decentralized finance, and digital assets, ultimately 

facilitating more informed decision-making and efficacious utilization of these cutting-

edge technologies. 
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