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Abstract: This study examines how the readability of scientific discourses changes 
over time and to what extent readability can explain scientific impact in terms of 
citation counts. The basis is a representative dataset of 135,502 abstracts from 
academic research papers pertaining to twelve technologies of different maturity. 
Using three different measures of readability, it is found that the language of the 
abstracts has become more complex over time. Across all technologies, less easily 
readable texts are more likely to receive at least one citation, while the effects are 
most pronounced for comparatively immature research streams. Among the more 
mature or larger discourses, the abstracts of the top 10% and 1% of the most often 
cited articles are significantly less readable. It remains open to what extent 
readability actually influences future citations and how much of the relationship is 
causal. If readability indeed drives citations, the results imply that scientists have 
an incentive to (artificially) reduce the readability of their abstracts in order to signal 
quality and competence to readers—both to get noticed at all and to attract more 
citations. This may mean a prisoner dilemma in academic (abstract) writing, where 
authors intentionally but unnecessarily complicate the way in which they 
communicate their work. 
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1 Introduction 

An essential aspect of academic research is to make the results available to other researchers 
and to the public in the form of publications so that, for example, the development of theory 
progresses, explorative analyses become public knowledge or existing literature is analyzed 
and summarized. Given that the number of new academic publications has continued to grow 
in recent years (Altbach and De Wit, 2018), it is ever more important to communicate the 
findings in an optimal way, for example by a concise title or abstract. In fact, scientific success 
has become tantamount to not just making the results available but getting them noticed and 
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cited by other scholars (Lu et al., 2019). This paper investigates whether an article’s citation 
success is linked to the style in which it is written or, more specifically, to its readability. 

The assessment of text readability based on formal analyses of the composition of words and 
other language structures is a long-standing scientific discourse that has produced hundreds of 
different metrics and methods (Gazni, 2011). Importantly, the resulting “readability scores” are 
typically somewhat at odds with the concept of readability in everyday language: A high score 
usually means that a text is more difficult to understand, i.e. its comprehension requires a higher 
level of education – in other words, the text is less readable. Readability assessment is a useful 
tool to determine whether the style of a text accords with the (language) skills of its intended 
readers. At the present time, various studies exist that address the readability of scientific 
studies and discourses. Building on a sample of 709,577 abstracts published between 1881 and 
2015, Plavén-Sigray et al. (2017) show that the readability scores of scientific texts have 
declined over time, i.e. texts are becoming easier to comprehend. However, this trend does not 
hold across all time periods, disciplines and sectors. For example, publications in marketing 
(Bauerly et al., 2006) and tourism (Dolnicar and Chapple, 2015) have become more complex 
over time. Lei and Yan (2016) find that the readability scores of abstracts in information science 
increased between 2003 and 2012. 

As prior research shows, readability can significantly affect scientific impact in the form of 
citations. Dowling et al. (2018) analyze the abstracts of 3,229 articles published in Economics 
Letters, finding a positive relationship between readability scores and citations, while 
McCannon (2019) finds that citation counts are negatively related to readability scores in a 
sample of 579 high-impact articles published in the American Economic Review. Marino Fages 
(2020) analyzes 9,757 NBER working papers and finds that articles with high readability scores 
are more likely to be published in a top journal. In biology, biochemistry and chemistry, 
however, no significant relationship was found between readability and citation counts 
(Didegah and Thelwall, 2013). 

This study aims to broaden the scientific discourse by assessing the readability of a large set of 
abstracts from publications on twelve emerging technologies over time and by analyzing the 
link between readability and citation counts. Emerging technologies are characterized by their 
radical novelty, fast growth, coherence, prominent impact, uncertainty and ambiguity (Rotolo 
et al., 2015). Several studies have recently focused on the identification, analysis and 
forecasting of emerging technologies. For example, scientometric indicators (H. Xu et al., 
2021), keyword analysis (Joung and Kim, 2017), patent analysis (Kyebambe et al., 2017), 
machine learning (Lee et al., 2018), social media data (Li et al., 2019) and frameworks based 
on topic models (S. Xu et al., 2021) or deep learning (Zhou et al., 2021) have been proposed to 
identify or monitor emerging technologies. While the identification of research streams, 
technologies and concepts requires considerable effort, it may help researchers to explore and 
publish on emerging topics, and academic journals and conferences to explicitly target these 
topics in the hope to anticipate future breakthroughs. Given that emerging technologies can 
transform entire economic sectors, they are also a curial concern for policymaking. The early 
and accurate assessment of their likely impact is therefore of great value. Once an emerging 
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technology has been identified, various actors can try to formulate their optimal strategies, be 
they policymakers, society, individuals, or academic journals. 

The present analysis is based on representative publication samples of twelve technological 
discourses that are at different points of development and maturity: artificial intelligence (AI), 
big data, Internet of Things (IoT), virtual reality (VR), cloud computing, blockchain, edge 
computing, autonomous driving, wireless body area networks (WBANs), smart contracts, and 
digital twin. For a topic to be included in this list, the associated search term(s) had to produce 
at least 500 publications from the Web of Science (WoS), at least one of which dates back at 
least five years. Since too many topics matched these criteria, the results were filtered so as to 
obtain some variation in terms of age and the number of publications, yielding a somewhat 
arbitrary set of twelve technologies. Each sample is examined using the same methodology to 
ascertain whether similar characteristics and effects can be identified. If the technological 
discourses prove to be similar regarding the development of readability over time and regarding 
any association between readability and scientific impact, it may be possible to infer similar 
relationships and developments for other recent or future discourses.  

The first goal of this study is to identify how the readability of technological discourse changes 
over time. For this purpose, three widely used readability measures are alternatively applied to 
the abstracts. Although the abstracts constitute only a small part of each publication, they may 
be considered representative of their respective papers because they are the most frequently 
read section of the text and because the style of the abstract tends to be consistent with the rest 
of each article (Hartley et al., 2003). 

The second goal is to see how readability affects scientific impact in the form of citations and, 
in particular, whether any persistent patterns across the twelve discourses might allow for more 
general inferences, e.g. with a view to predicting highly influential scientific contributions. In 
the following, scientific impact is operationalized as the papers either 1) not receiving any 
citations at all, 2) being in the top 10% in terms of normalized citations in a particular field and 
year or 3) the top 1% in terms of normalized citations in a particular field and year. This 
differentiation should give some indication as to whether researchers should consider the 
readability of their output on (emerging) technology research as they try to maximize their 
scientific impact. 

This study proceeds as following. Section 2 presents and discusses the publication and citation 
data (Section 2.1), the normalization of the citation data (Section 2.2), and the readability 
metrics (Section 2.3). In Section 3, any citations effects of readability are analyzed. Section 4 
contains a discussion of the results, including some limitations (4.1) and avenues for future 
research (4.2). Section 5 concludes. 

2 Methods and descriptive statistics 

2.1 Publication and citation data 

The publication and citation data were collected from the WoS. The twelve search queries listed 
in Table 1 were executed in January 2021. The search was restricted to the category Article, 
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which means that only peer-reviewed articles, conference papers and book chapters were 
returned. Furthermore, only articles published by the end of 2020 were collected. The search 
query option TS (=Topic) was used, which returns all publications in the WoS that contain the 
search terms in their title or abstract. All articles without abstracts were dropped (~1-4% per 
stream). The citation counts refer to citations in the WoS database—which are significantly 
lower than, for example, Google Scholar, because the WoS lists only selected journals. 

Table 1. Research streams, search terms and descriptive statistics. 

    Citations 

Research stream Search query 
TS=(…) 

Number of 
articles 

First 
mention Mean SD Max 

Share of 
uncited 
articles 

Artificial 
intelligence 

"artificial 
intelligence*" 30,473 1985 12.2 52.9 3,805 27.7% 

Big data "big data*" 26,615 1993 12.0 57.0 5,387 25.3% 

Robotics robotics* 25,970 1985 19.2 56.6 2,103 17.4% 

Internet of Things "internet of things*" 21,799 2002 12.0 66.2 6,115 26.4% 

Virtual reality "virtual realit*" 20.286 1991 17.5 43.3 1,745 20.7% 

Cloud computing "cloud computing*" 18,344 2008 14.9 63.2 4,461 22.9% 

Blockchain blockchain* OR 
"distributed ledger*" 4,059 2014 8.75 29.1 995 34.8% 

Edge computing "edge computing*" 3,399 2002 12.6 41.7 906 31.5% 

Autonomous 
driving 

"autonomous 
driving*" 1,553 1993 11.0 45.8 1,298 31.9% 

Wireless body 
area networks 

"wireless body area 
network*" OR WBAN 1,553 1999 14.2 36.9 690 18.4% 

Smart contracts "smart contract*" 1,006 2001 10.1 40.6 997 33.8% 

Digital twin "digital twin*" 711 2004 6.8 22.7 711 39.7% 

In the context of the literature data extraction, it is likely that some relevant articles are omitted 
by the search queries that consist of high-level phrases. However, the comparatively simple 
approach chosen here, in addition to the ease of replicating the analysis, most likely covers the 
vast majority of all relevant articles. Accordingly, also due to the fact that WoS does not include 
“all” existing articles on the particular topics, the data set(s) obtained cannot be described as 
complete but rather as representative. 

A total of 135,502 articles were extracted. With 30,473 (22.5%) publications, AI is the largest 
of the twelve discourses. Jointly with robotics, it is also the oldest, the earliest publication 
dating back 36 years. The youngest research stream (six years) is blockchain technology, 
which, however, has the seventh largest number of publications. Across the board, 24.75% of 
the publications have not been cited to date. This proportion is higher for comparatively recent 
discourses—unsurprisingly, because there the publications have had less time in which to be 
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cited. The area of wireless body area networks constitutes an exception in this regard, with only 
18.4% of uncited articles. The smallest and second youngest stream deals with digital twin 
technology. It has the lowest average number of citations per publication (6.8) and the highest 
share of uncited articles (39.7%). Given that about 60% of the stream’s articles were published 
only in 2020, this is not surprising. 

Fig. 1 shows, for each research stream, the development of the average number of citations per 
article and year (red line, right-hand scale) and the number of publications per year (black line, 
left-hand scale). The younger discourses are evidently growing very quickly, while the older 
discourses, like AI, robotics and VR, have been growing rapidly since 2015. This will partly 
be due the fact that the overall output of scientific research has increased in recent years 
(Altbach and De Wit, 2018). Regarding the average number of citations per article and year, 
younger discourses show a steady decline, while the three oldest peaked around 2003. The low 
values in recent years are again attributable to the fact that younger publications have had less 
opportunity to be cited (Schubert and Braun 1986). 

 

Fig 1. Number of citations and publications. The black lines show the number of publications per year 
(left-hand axis); the red lines refer to the mean number of citations that an article received each year (right-
hand axis). Years with fewer than 10 publications are not shown. 

 

2.2 Normalizing the citation data 

Citation data are not normally distributed, as confirmed in Table 1. Furthermore, there are 
significant differences in citation habits between the individual scientific fields, and older 
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articles benefit from the above-mentioned citation advantage. For these reasons, the 
normalization of citation data is common practice. We use the relative citation rate (RCR) 
described by Schubert and Braun (1986): An article’s observed number of citations is divided 
by the expected citation rate, which equals the average number of citations of an article in the 
same technological discourse in a given year. Accordingly, the mean RCR of each discourse is 
always 1, as can be seen in Fig 2. The confidence intervals show that the variance of the citation 
counts declines as the scientific discourses develop over time. 
 

 
Fig 2. Relative citation ratios (RCRs) over time. The red lines show 95% confidence intervals for the 
RCRs. Only years with at least 10 observations are shown. 

For further analysis, we create three dummy variables for each research stream. The first one 
indicates whether an article did not receive any citations at all; the second one indicates whether 
a publication is in the top 10% based of RCRs of a particular discourse; and the third one does 
the same for the top 1% of RCRs. These three variables are used as proxies for low, high, and 
highest scientific impact. 

2.3 Readability analysis 

The readability of the abstracts was analysed using the Python package Readability 0.3.1 
(pypi.org/project/readability). The package contains various readability measures for text data. 
To make the analysis both clear and robust, we choose three different readability measures that 
can all be interpreted in the same way—US grade levels. For example, a readability score of 
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15 (i.e. “15th grade”) indicates that a university education would be required to comprehend a 
text, while a score of 5-6 indicates that Kindergarten-level education suffices to understand the 
text. The three measures are: 1) the Flesch-Kincaid grade level (FKG), 2) the Simple Measure 
of Gobbledygook (SMOG), and 3) the Automated Readability Index (ARI) (Flesch, 1948; 
Kincaid et al., 1975; McLaughlin, 1969; Senter and Smith, 1967). They are calculated as 
follows. 

!"#$%ℎ-()*%+),	./+,#	"#0#" = 0.396
787+"	98/,$

787+"	$#*7#*%#$
: + 11.8 6

787+"	$>""+?"#$

787+"	98/,$
: (1) 

@ABC	./+,# = 1.0430E*FG?#/	8H	I8">$>""+?"#$	
30

*FG?#/	8H	$#*7#*%#$
+ 3.1291 (2) 

KF78G+7#,	/#+,+?)")7>	)*,#L = 4.71 6
%ℎ+/+%7#/$

98/,$
: + 0.5 6

98/,$

$#*7#*%#$
: − 21.43 (3) 

Although the three readability measures use somewhat different input parameters, they tend to 
be positively correlated (e.g. Lei and Yan 2016). This is confirmed in Fig. 3, which shows the 
readability scores of the research streams over time. On average, the values of the ARI are 
about one point above those of the SMOG grade and about two points above the FKG. Given 
that the three metrics supposedly all refer to US grade levels, these differences are surprising. 
It should be noted, however, that the scores are above 14 throughout, which implies that the 
texts are best suited for readers with university education or even a PhD. 

SMOG produces the most stable scores, especially in the fields of robotics, VR and WBANs, 
where the FKG briefly rises above the SMOG grade. Rising readability scores are evident in 
most streams—the abstracts have become more difficult to read. These results contrast with 
some of the literature (Plavén-Sigray et al., 2017). Scientific discourses on emerging 
technologies seem to exhibit peculiarities in their development that set them apart from the 
general scientific output.  
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Fig 3. Abstract readability per research field. Only years with at least 10 observations are shown. 

3 How readability affects scientific impact 

While the last section presented statistics on individual metrics, these are now connected to 
identify whether readability affects scientific impact in the form of citations. Table 2 shows 
descriptive statistics for the three readability measures—in turn for all articles in each field and 
for the three subsamples (no citations, top 10% RCR, and top 1% RCR). Asterisks indicate 
significance in a two-sample t-tests with equal variances. In other words, they indicate whether 
the three subsamples differ significantly from the full sample in each research field.  

The three readability measures yield quite similar scores across the twelve fields for the full 
samples (FKG: 15.0-16.5; SMOG: 16.1-17.6; ARI: 17.5-18.8). With a minimum average grade 
level of 15.0 (FKG for WBANs), the abstracts are clearly rather complex, requiring at least 
university education to be understood. For the four largest research streams, the readability 
scores of the 10% most often cited abstracts are significantly higher than in the reference group. 
This also applies to the top 1% for AI and robotics—the oldest discourses. For smaller 
discourses, significant differences are only found with respect to individual readability 
measures. For VR, blockchain, smart contracts and digital twin, we find that uncited articles 
are significantly easier to read than the average of all abstracts in each field. Overall, uncited 
articles on average are almost always easier or no more difficult to read than all articles, and 
the reverse holds for the abstracts of the top 10% and top 1% most widely cited articles.
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Table 2. Readability and relative citation ratios per technology discourse. The table shows the average readability scores for the twelve technology discourses and 
subsamples based on (relative) citation count. For subsamples, the nominal p-values of a two-sample t-test are additionally shown. For the number of observations, see 
Table 1. 

 FKG  SMOG  ARI 
 Full 

sample 
Uncited 
articles 

10% 
RCR 

1% 
RCR  Full 

sample 
Uncited 
articles 

10% 
RCR 

1% 
RCR 

 Full 
sample 

Uncited 
articles 

10% 
RCR 

1% 
RCR 

Artificial intelligence 15.8 15.8 
(0.108) 

17.1*** 
(0.000) 

16.9*** 
(0.000) 

 16.8 16.8 
(0.318) 

17.0*** 
(0.000) 

17.4*** 
(0.000) 

 18.4 18.4 
(0.186) 

18.9*** 
(0.000) 

19.9*** 
(0.000) 

Big data 16.0 15.9 
(0.242) 

16.1** 
(0.018) 

15.8 
(0.315) 

 16.8 16.8* 
(0.090) 

17.0*** 
(0.000) 

16.8 
(0.624) 

 18.6 
 

18.5** 
(0.033) 

18.8*** 
(0.000) 

18.4 
(0.378) 

Robotics 15.6 15.6 
(0.340) 

16.1*** 
(0.000) 

16.5*** 
(0.000) 

 16.5 16.5* 
(0.097) 

16.9*** 
(0.000) 

17.2*** 
(0.000) 

 18.0 18.0 
(0.884) 

18.9*** 
(0.000) 

19.6*** 
(0.000) 

Internet of Things 15.7 15.7 
(0.722) 

15.8*** 
(0.004) 

15.7 
(0.841) 

 16.8 16.8* 
(0.058) 

17.0*** 
(0.000) 

17.0 
(0.302) 

 18.3 18.3 
(0.504) 

18.6*** 
(0.000) 

18.5 
(0.466) 

Virtual reality 15.8 15.7*** 
(0.000) 

15.8 
(0.732) 

16.2 
(0.146) 

 16.8 16.6*** 
(0.000) 

16.9 
(0.280) 

17.2** 
(0.026) 

 18.2 18.1** 
(0.019) 

18.4*** 
(0.006) 

18.9** 
(0.020) 

Cloud computing 15.4 15.4 
(0.701) 

15.4 
(0.745) 

15.4 
(0.984) 

 16.6 16.5* 
(0.087) 

16.7*** 
(0.005) 

16.7 
(0.404) 

 18.1 18.0 
(0.546) 

18.1 
(0.470) 

18.1 
(0.842) 

Blockchain 15.4 15.2** 
(0.014) 

15.2 
(0.217) 

15.2 
(0.708) 

 16.7 16.7* 
(0.054) 

16.7 
(0.230) 

16.8 
(0.636) 

 18.4 18.2* 
(0.183) 

18.3 
(0.483) 

18.1 
(0.562) 

Edge computing 16.0 16.0 
(0.535) 

16.0 
(0.734) 

15.9 
(0.916) 

 17.2 17.2 
(0.572) 

17.3 
(0.321) 

17.3 
(0.787) 

 18.8 18.7 
(0.303) 

18.9 
(0.594) 

18.6 
(0.740) 

Autonomous driving 15.7 15.7 
(0.990) 

15.6 
(0.493) 

15.2 
(0.384) 

 16.8 16.8 
(0.709) 

16.7 
(0.397) 

16.6 
(0.552) 

 18.2 18.2 
(0.880) 

18.2 
(0.927) 

18.1 
(0.870) 

WBAN 15.0 14.8 
(0.148) 

15.2 
(0.352) 

15.1 
(0.920) 

 16.1 15.9* 
(0.098) 

16.4* 
(0.059) 

16.0 
(0.808) 

 17.5 17.3 
(0.281) 

17.9 
(0.196) 

17.6 
(0.946) 

Smart contracts 15.3 15.1** 
(0.049) 

15.4 
(0.723) 

15.2 
(0.949) 

 16.5 16.7* 
(0.081) 

16.5 
(0.914) 

16.2 
(0.632) 

 18.5 18.3* 
(0.083) 

18.6 
(0.581) 

18.6 
(0.849) 

Digital twin 16.5 16.2** 
(0.045) 

16.7 
(0.394) 

16.8 
(0.770) 

 17.6 17.4* 
(0.065) 

17.8 
(0.532) 

18.0 
(0.625) 

 18.8 18.5* 
(0.085) 

19.1 
(0.432) 

19.0 
(0.882) 

*, **, *** indicates a difference between the full sample and the respective subsample that is significant at the 10%, 5%, or 1% level (two-sample t-test).
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Table 3 shows Pearson correlation coefficients and p-values for the three readability measures, 
for the variable RCR in general and for the three subsamples (no citations, top 10% RCR, and 
top 1% RCR). The four largest fields all return significantly positive correlations between RCR 
and the three different readability measures. Correlations for uncited articles across these four 
fields remain largely insignificant, while the top 10% and top 1% samples have significantly 
positive relationships with readability in most cases. For comparatively recent discourses, the 
correlations are largely insignificant when considering results across all three measures for the 
purpose of robustness. 

In the next step, logistic regression models are estimated to gauge whether the scores from the 
three readability formulas affect the articles’ scientific impact, specifically the likelihood of 
their falling into one of the three categories (no citations, top 10%, top 1%). In line with prior 
research on readability and scientific impact (e.g. Dowling et al. 2018), year fixed effects are 
included in the analysis. In addition to the entire sample, as a robustness check, we also 
investigate a reduced sample, which excludes all articles published in 2020. The aim is to 
reduce the risk that (potentially high-impact) publications are assigned to the group of uncited 
articles solely because they are so recent (e.g., published in December 2020). 

The models for uncited articles are shown in Table 4, those for articles in the top 10% of RCR 
in Table 5, and those for the top 1% in Table 6. In each table, columns A through C show the 
results for the total sample and columns D to F those for the reduced sample. Each cell in 
columns A through F shows the coefficient, standard error and significance level of an 
individual regression. For example, cell “A1” in Table 5 reports the result of regressing the 
FGK readability score on the dummy variable for articles not being cited at all. The coefficients 
on the controls and the constant term are not reported. !"#### refers to the mean variance explained 
(McFadden’s R2) across the three models for each research field; N is the maximum sample 
size. The actual number of observations varies slightly across the three models due to fixed 
effects. If, for example, all publications in a given year are uncited, they are excluded from the 
analysis, as this particular subpanel provides no information on how a change in the predictor 
variable is associated with a change in the outcome variable. This often applies to years with 
very few publications—which correspondingly slightly reduces the number of observations in 
the regressions, as respective dummy variables all have the same value. 

In Table 4, the coefficients are always negative and, for the full sample, significant at some 
level. The results are robust as they hold across all three readability models and both samples. 
For the limited sample, the explanatory power is lower and the results are inconclusive (they 
fail to be significant across all three readability measures) for three of the smallest four 
discourses. The results clearly indicate that higher readability scores reduce the probability that 
a publication is not cited. The significance of the effects seems to increase with the sample size, 
yet the results are still mostly significant for smaller samples and the reduced time period. 
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Table 3. Correlation between readability and relative citation ratios per technology discourse. The table shows Pearson correlations and nominal p-values for the 
twelve technology discourses and subsamples based on (relative) citation count. For the number of observations, see Table 1. 

 FKG  SMOG  ARI 
 RCR Uncited 

articles 
10% 
RCR 1% RCR  RCR Uncited 

articles 
10% 
RCR 1% RCR  RCR Uncited 

articles 
10% 
RCR 1% RCR 

Artificial intelligence 0.019*** 
(0.001) 

0.009 
(0.108) 

0.024*** 
(0.000) 

0.033*** 
(0.000) 

 0.021*** 
(0.000) 

0.006 
(0.318) 

0.026*** 
(0.000) 

0.028*** 
(0.000) 

 0.032*** 
(0.000) 

0.008 
(0.186) 

0.039*** 
(0.000) 

0.038*** 
(0.000) 

Big data 0.018*** 
(0.001) 

-0.007 
(0.242) 

0.015** 
(0.018) 

-0.006 
(0.315) 

 0.012** 
(0.045) 

-0.010 
(0.090) 

0.023*** 
(0.000) 

-0.003 
(0.624) 

 0.012* 
(0.056) 

-0.013** 
(0.033) 

0.020*** 
(0.000) 

-0.005 
(0.378) 

Robotics 0.055*** 
(0.000) 

0.006 
(0.340) 

0.050*** 
(0.000) 

0.028*** 
(0.000) 

 0.059*** 
(0.000) 

0.010 
(0.097) 

0.058*** 
(0.000) 

0.033*** 
(0.000) 

 0.075*** 
(0.000) 

0.001 
(0.088) 

0.071*** 
(0.000) 

0.036*** 
(0.000) 

Internet of Things 0.015** 
(0.025) 

-0.002 
(0.722) 

0.019*** 
(0.004) 

0.001 
(0.841) 

 0.028*** 
(0.000) 

-0.013 
(0.058) 

0.036*** 
(0.000) 

0.007 
(0.302) 

 0.025*** 
(0.000) 

-0.005 
(0.504) 

0.029*** 
(0.000) 

0.005 
(0.467) 

Virtual reality 0.002 
(0.761) 

0.031*** 
(0.000) 

0.002 
(0.732) 

0.010 
(0.146) 

 0.010 
(0.156) 

0.034*** 
(0.000) 

0.008 
(0.280) 

0.016 
(0.026) 

 0.023*** 
(0.001) 

0.017** 
(0.018) 

0.019*** 
(0.006) 

0.016** 
(0.020) 

Cloud computing 0.004 
(0.551) 

0.003 
(0.701) 

0.002 
(0.745) 

0.001 
(0.962) 

 0.023*** 
(0.002) 

-0.0126* 
(0.087) 

0.021*** 
(0.005) 

0.006 
(0.404) 

 0.008 
(0.261) 

-0.004 
(0.546) 

0.005 
(0.470) 

0.002 
(0.842) 

Blockchain 0.032** 
(0.042) 

-0.039** 
(0.014) 

0.021*** 
(0.003) 

-0.006 
(0.708) 

 0.030* 
(0.053) 

-0.030* 
(0.054) 

0.019 
(0.223) 

0.007 
(0.063) 

 0.024 
(0.135) 

-0.021 
(0.183) 

0.011 
(0.483) 

-0.009 
(0.562) 

Edge computing -0.011 
(0.542) 

-0.011 
(0.536) 

0.005 
(0.734) 

-0.002 
(0.916) 

 -0.005 
(0.772) 

-0.010 
(0.572) 

0.017 
(0.572) 

0.005 
(0.788) 

 -0.010 
(0.555) 

-0.018 
(0.303) 

0.009 
(0.594) 

-0.006 
(0.740) 

Autonomous driving -0.026 
(0.302) 

0.000 
(0.990) 

-0.017 
(0.493) 

-0.022 
(0.384) 

 -0.021 
(0.415) 

-0.010 
(0.397) 

-0.022 
(0.709) 

-0.015 
(0.552) 

 -0.014 
(0.570) 

-0.004 
(0.880) 

-0.002 
(0.930) 

-0.004 
(0.870) 

WBAN 0.020 
(0.435) 

-0.037 
(0.148) 

0.024 
(0.352) 

0.003 
(0.920) 

 0.040 
(0.117) 

-0.041 
(0.108) 

0.050* 
(0.060) 

-0.006 
(0.801) 

 0.025 
(0.321) 

-0.027 
(0.281) 

0.033 
(0.196) 

0.002 
(0.946) 

Smart contracts -0.025 
(0.432) 

0.062** 
(0.049) 

0.011 
(0.723) 

-0.002 
(0.949) 

 -0.029 
(0.365) 

0.055* 
(0.081) 

0.003 
(0.914) 

-0.015 
(0.632) 

 -0.014 
(0.665) 

0.045 
(0.153) 

0.017 
(0.581) 

0.006 
(0.849) 

Digital twin 0.041 
(0.278) 

-0.075** 
(0.045) 

0.032 
(0.394) 

0.011 
(0.770) 

 0.045 
(0.236) 

-0.069* 
(0.065) 

0.024 
(0.532) 

0.018 
(0.625) 

 0.043 
(0.257) 

-0.065* 
(0.085) 

0.030 
(0.432) 

0.006 
(0.881) 

*, **, *** indicates a difference between the full sample and the respective subsample that is significant at the 10%, 5%, or 1% level. 
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Table 4. Logistic regression results for uncited articles. The regressions predict articles receiving zero citations depending on the three readability measures. 
!"#### is the average variance explained (McFadden’s R2) across each set of three models that use the same data basis. All models control for year of publication. 
Controls and constant term are not reported. 

 All articles  Articles published before 2020 
 (A) 

FKG 
(B) 

SMOG 
(C) 
ARI 

   (D) 
FKG 

(E) 
SMOG 

(F) 
ARI 

  

 Coef. (SE) Coef. (SE) Coef. (SE) !"#### N  Coef. (SE) Coef. (SE) Coef. (SE) !"#### N 
(1) Artificial intelligence -0.016*** 

(0.005) 
-0.0225*** 

(0.0066) 
-0.0153*** 

(0.0039) 
0.136 30,473  -0.0152** 

(0.0055) 
-0.0217*** 

(0.0082) 
-0.0102** 
(0.0048) 

0.024 22,705 

(2) Big data -0.0197*** 
(0.0054) 

-0.0372*** 
(0.0073) 

-0.0244*** 
(0.0045) 

0.146 26,615  -0.0263*** 
(0.0069) 

-0.0490*** 
(0.0094) 

-0.0322*** 
(0.0058) 

0.034 20,212 

(3) Robotics -0.0102* 
(0.0060) 

-0.0335*** 
(0.0089) 

-0.0222*** 
(0.0053) 

0.158 25,970  -0.0146*** 
(0.0064) 

-0.0269*** 
(0.0103) 

-0.0156*** 
(0.0058) 

0.024 22,758 

(4) Internet of Things -0.0107* 
(0.0057) 

-0.0356*** 
(0.0088) 

-0.0139** 
(0.0054) 

0.167 21,799  -0.0261*** 
(0.0092) 

-0.0396*** 
(0.0124) 

-0.0139* 
(0.0076) 

0.028 15,024 

(5) Virtual reality -0.0166*** 
(0.0054) 

-0.0165* 
(0.0099) 

-0.0107** 
(0.0051) 

0.162 20.286  -0.0165*** 
(0.0058) 

0.0184** 
(0.0089) 

-0.0125** 
(0.0057) 

0.023 17,474 

(6) Cloud computing -0.0114* 
(0.0066) 

-0.0389*** 
(0.0097) 

-0.0091* 
(0.0053) 

0.115 18,344  -0.00125* 
(0.0073) 

-0.0472*** 
(0.0114) 

-0.0102* 
(0.060) 

0.016 15,229 

(7) Blockchain -0.0371*** 
(0.0126) 

-0.0348** 
(0.0169) 

-0.0196* 
(0.0104) 

0.105 4,059  -0.0721*** 
(0.0192) 

-0.0892*** 
(0.0272) 

-0.0415*** 
(0.0157) 

0.020 1,947 

(8) Edge computing -0.0313* 
(0.0181) 

-0.0417* 
(0.0228) 

-0.0253* 
(0.0146) 

0.225 3,399  -0.0794** 
(0.0383) 

-0.0991** 
(0.0481) 

-0.0610** 
(0.0311) 

0.039 1,696 

(9) Autonomous driving -0.0198** 
(0.0072) 

-0.0369* 
(0.0201) 

-0.0371* 
(0.224) 

0.201 1,553  -0.0244 
(0.0415) 

-0.0721 
(0.0539) 

-0.0470 
(0.0349) 

0.064 963 

(10) WBAN -0.0595* 
(0.0305) 

-0.1081*** 
(0.0404) 

-0.0391* 
(0.0234) 

0.150 1,553  -0.0621 
(0.0356) 

-0.1123** 
(0.0477) 

-0.0312 
(0.0272) 

0.070 1,327 

(11) Smart contracts -0.0656** 
(0.0278) 

-0.0629* 
(0.0353) 

-0.0378* 
(0.0227) 

0.113 1,006  -0.1196*** 
(0.0411) 

-0.0961 
(0.0599) 

-0.0701* 
(0.0374) 

0.018 470 

(12) Digital twin -0.077** 
(0.031) 

-0.0855** 
(0.0389) 

-0.0561** 
(0.0242) 

0.062 711  -0.174*** 
(0.062) 

-0.1665** 
(0.0744) 

-0.1349*** 
(0.0484) 

0.027 281 

*,**,*** indicate significance at the 10%, 5%, 1% level.  
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Table 5. Logistic regression results for articles being located in the top 10% based on relative citation ratio. The regressions predict articles being located 
in the top 10% based on relative citation ratio depending on the three readability measures. !"#### is the average variance explained (McFadden’s R2) across each 
set of three models that use the same data basis. All models control for year of publication. Controls and constant term are not reported. 

 All articles  Articles published before 2020 
 (A) 

FKG 
(B) 

SMOG 
(C) 
ARI 

   (D) 
FKG 

(E) 
SMOG 

(F) 
ARI 

  

 Coef. (SE) Coef. (SE) Coef. (SE) !"#### N  Coef. (SE) Coef. (SE) Coef. (SE) !"#### N 
(1) Artificial intelligence 0.0221*** 

(0.0055) 
0.0367*** 
(0.0088) 

0.0269*** 
(0.0043) 

0.006 30,473  0.0192*** 
(0.0061) 

0.0339*** 
(0.0101) 

0.0229*** 
(0.0047) 

0.004 22,705 

(2) Big data 0.0147** 
(0.0068) 

0.0323*** 
(0.0094) 

0.0168*** 
(0.0055) 

0.003 26,615  0.0135** 
(0.0072) 

0.0273** 
(0.0109) 

0.0139** 
(0.0063) 

0.002 20,212 

(3) Robotics 0.0361*** 
(0.0049) 

0.0878*** 
(0.0098) 

0.0391*** 
(0.0041) 

0.010 25,970  0.0339*** 
(0.0050) 

0.0829*** 
(0.0104) 

0.0317*** 
(0.0042) 

0.008 22,758 

(4) Internet of Things 0.0244*** 
(0.0086) 

0.0592*** 
(0.0114) 

0.0286*** 
(0.0068) 

0.003 21,799  0.0283*** 
(0.0099) 

0.0697*** 
(0.0134) 

0.0322*** 
(0.0079) 

0.003 15,024 

(5) Virtual reality 0.0023 
(0.0068) 

0.0137 
(0.0116) 

0.0131*** 
(0.0047) 

0.002 20.286  -0.0018 
(0.0074) 

0.0032 
(0.0124) 

0.0109** 
(0.0049) 

0.002 17,474 

(6) Cloud computing 0.0223*** 
(0.0079) 

0.0353*** 
(0.0123) 

0.0243*** 
(0.0062) 

0.002 18,344  0.0040 
(0.0082) 

0.0426*** 
(0.0133) 

0.0056 
(0.0065) 

0.001 15,229 

(7) Blockchain -0.0243 
(0.0194) 

-0.0303 
(0.0253) 

-0.0114 
(0.0158) 

0.001 4,059  -0.0178 
(0.0265) 

-0.0176 
(0.0352) 

-0.0100 
(0.0211) 

0.001 1,947 

(8) Edge computing 0.0091 
(0.0240) 

0.03227 
(0.0305) 

0.0109 
(0.0194) 

0.003 3,399  0.0411 
(0.0324) 

0.0833** 
(0.0417) 

0.0339 
(0.0260) 

0.002 1,696 

(9) Autonomous driving -0.0213 
(0.0405) 

-0.0376 
(0.0510) 

0.0051 
(0.0329) 

0.010 1,553  0.0183 
(0.0483) 

0.0006 
(0.0611) 

0.0295 
(0.0390) 

0.008 963 

(10) WBAN 0.0198 
(0.0253) 

0.0845* 
(0.0461) 

0.0220 
(0.0195) 

0.006 1,553  0.0065 
(0.0280) 

0.0650 
(0.0488) 

0.0126 
(0.0210) 

0.006 1,327 

(11) Smart contracts 0.0163 
(0.0398) 

0.0092 
(0.0515) 

0.0192 
(0.0327) 

0.007 1,006  0.0437 
(0.0545) 

0.0526 
(0.0732) 

0.0386 
(0.0454) 

0.003 470 

(12) Digital twin 0.0389 
(0.0441) 

0.0381 
(0.0577) 

0.0294 
(0.0348) 

0.004 711  0.0769 
(0.0710) 

0.0939 
(0.0917) 

0.0632 
(0.0555) 

0.009 281 

*,**,*** indicate significance at the 10%, 5%, 1% level. 

  



 14 

Table 6. Logistic regression results for articles being located in the top 1% based on relative citation ratio. The regressions predict articles being located 
in the top 1% based on relative citation ratio depending on the three readability measures. !"#### is the average variance explained (McFadden’s R2) across each 
set of three models that use the same data basis. All models control for year of publication. Controls and constant term are not reported. 

 All articles  Articles published before 2020 
 (A) 

FKG 
(B) 

SMOG 
(C) 
ARI 

   (D) 
FKG 

(E) 
SMOG 

(F) 
ARI 

  

 Coef. (SE) Coef. (SE) Coef. (SE) !"#### N  Coef. (SE) Coef. (SE) Coef. (SE) !"#### N 
(1) Artificial intelligence 0.0565*** 

(0.0104) 
0.1215*** 
(0.0244) 

0.0486*** 
(0.0081) 

0.015 30,473  0.0507*** 
(0.0113) 

0.1070*** 
(0.0284) 

0.0426*** 
(0.0088) 

0.015 22,705 

(2) Big data -0.0244 
(0.0223) 

-0.0178 
(0.0294) 

-0.0186 
(0.0182) 

0.009 26,615  -0.0117 
(0.0247) 

-0.0003 
(0.0332) 

-0.0047 
(0.0199) 

0.004 20,212 

(3) Robotics 0.0375*** 
(0.0091) 

0.1450*** 
(0.0275) 

0.0337*** 
(0.0066) 

0.012 25,970  0.0322*** 
(0.0102) 

0.1189*** 
(0.0298) 

0.0303*** 
(0.0071) 

0.011 22,758 

(4) Internet of Things 0.0028 
(0.0259) 

0.0320 
(0.0340) 

0.0125 
(0.0202) 

0.010 21,799  0.0098 
(0.0301) 

0.0469 
(0.0402) 

0.0247 
(0.0225) 

0.004 15,024 

(5) Virtual reality 0.0178** 
(0.0092) 

0.0737** 
(0.0342) 

0.0195** 
(0.0094) 

0.013 20.286  0.0131 
(0.0160) 

0.0581 
(0.0361) 

0.0161 
(0.0104) 

0.014 17,474 

(6) Cloud computing -0.0004 
(0.0250) 

0.0272 
(0.0367) 

0.0031 
(0.0195) 

0.009 18,344  0.0086 
(0.0225) 

0.0651* 
(0.0388) 

0.0106 
(0.0169) 

0.011 15,229 

(7) Blockchain -0.0210 
(0.0594) 

-0.0349 
(0.0781) 

-0.0276 
(0.0506) 

0.017 4,059  -0.0570 
(0.0875) 

-0.0267 
(0.1107) 

-0.0425 
(0.0722) 

0.016 1,947 

(8) Edge computing -0.0138 
(0.0773) 

0.0178 
(0.0957) 

-0.0230 
(0.0632) 

0.022 3,399  -0.0955 
(0.1103) 

-0.0143 
(0.1329) 

-0.0497 
(0.0886) 

0.013 1,696 

(9) Autonomous driving -0.1131 
(0.1257) 

-0.0970 
(0.1535) 

-0.0264 
(0.0991) 

0.032 1,553  -0.0100 
(0.1559) 

-0.0122 
(0.1943) 

0.0357 
(0.1211) 

0.041 963 

(10) WBAN -0.0073 
(0.0741) 

-0.0368 
(0.1457) 

-0.0070 
(0.0603) 

0.022 1,553  -0.0228 
(0.0875) 

-0.1004 
(0.1522) 

-0.0151 
(0.0676) 

0.030 1,327 

(11) Smart contracts -0.0092 
(0.1242) 

-0.0826 
(0.0164) 

0.0181 
(0.0986) 

0.027 1,006  -0.0322 
(0.1899) 

-0.0469 
(0.2495) 

0.0166 
(0.1476) 

0.001 470 

(12) Digital twin 0.0565*** 
(0.0104) 

0.0955 
(0.1689) 

0.0251 
(0.1082) 

0.008 711  -0.0770 
(0.2979) 

-0.1932 
(0.3637) 

-0.1101 
(0.2339) 

0.034 281 

*,**,*** indicate significance at the 10%, 5%, 1% level.
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Table 5 shows a split picture. For the four largest discourses—AI, big data, robotics, and IoT—
we find highly significant positive effects for all readability measures in both samples on 
publications being in the top 10% based on RCR. This also holds for cloud computing in four 
of the six models. No robust (i.e. cross-readability, cross-sample) significant effects are found 
for any of the other samples. Accordingly, it can be concluded that readability is a significant 
driver of high scientific impact. 

Regarding the readability of abstracts of the greatest scientific impact, only AI and robotics 
show significant, robust positive effects (cf. Table 6). These are the oldest samples (first 
mention in 1985) with comparatively many publications. 

4 Discussion 

Based on a large set of publications on twelve emerging technologies of different levels of 
maturity, this study investigated how the readability of the abstracts changes over time and how 
it relates to—and potentially affects—scientific impact in the form of the articles’ citation 
counts. Three standard measures of text readability were employed. 

In all of the twelve research fields, the abstracts are quite complex on average. The readability 
scores increased in almost all samples, meaning that the abstracts have become more difficult 
to understand. This result is consistent with prior research on the readability of scientific 
publications on marketing and tourism (Bauerly et al., 2006; Dolnicar and Chapple, 2015). Our 
results thus suggest that scientific discourses on emerging technologies, like academic research 
in general (Plavén-Sigray et al., 2017), do not become easier to understand as they mature.  

A key finding with far-reaching implications, which applies to almost all of the research fields 
considered, is that articles with more complex abstracts have a lower likelihood of remaining 
uncited. This result is in line with Dowling et al. (2018)’s findings on the impact of readability 
on articles published in Economics Letters. These effects suggest that scientists have an 
incentive to inflate the complexity of their abstracts to maximize the number of citations, or at 
least to avoid not being cited. Besides authors, this result is also relevant for the strategic 
orientation of academic journals. Citation-based metrics such as the Impact Factor or CiteScore 
are a key factor in assessing the quality of journals. Academic outlets may therefore want to 
assess, among other metrics, the readability of abstracts when processing submissions to gauge 
the potential impact of an article and how it may affect journal rankings.  

Along with the title and author name(s), the abstract is likely to be the first piece of information 
about an article that a reader sees. Due to their limited capacity to process information, people 
are strongly influenced by the first information they receive on a topic. This first impression 
bias means that our initial impression affects how we judge subsequent content. If the following 
information is inconsistent, people tend to interpret it in such a way that it corresponds to the 
first impression (in line with the confirmation bias (Nickerson, 1998)). Only in the face of 
persistent anomalies do people begin to question their first impression (Asch, 1946). 
Furthermore, people tend to better remember the information they received first, which is called 
the primary effect (Jones and Goethals, 1987). These effects underline the relevance of the 
abstract and its readability.  
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In line with the Doctor Fox Phenomenon, which states that academic prestige correlates with 
complexity in communication (Armstrong, 1980; Naftulin et al., 1973), academics could signal 
their (purported) research competence though complex writing, which in turn result in higher 
citation counts. Thus, authors would have an incentive to make their abstracts as complex as 
possible to improve their chances of achieving scientific impact. If higher readability scores 
signal competence, there is also an incentive to increase or control an abstract’s linguistic 
complexity over the various rounds of the scientific peer review process in order to feign equal 
or higher quality. 

4.1 Limitations 

The first limitation concerns the source of the data. They are obtained from published papers 
contained in the WoS database, all of which satisfy certain quality requirement—the WoS only 
indexes selected journals, books and conference proceedings. Our data source may therefore 
entail a selection bias in terms of quality and/or readability—similarly to the potential 
downward bias mentioned by McCannon (2019). Future research could additionally include 
“less prominent” literature, possibly building on Google Scholar. Another potential source of 
selection bias consists in our choice of research fields, whose subjectivity was already 
discussed above. We specifically selected a larger number of subject areas to minimize any 
such bias. 

Secondly, in the multivariate analysis, the fact that some models explain only a small share of 
the variance indicates that there are important drivers of citation counts besides readability. 
Integrating further control variables could improve the explanatory power of the models, the 
significance of the results, and thus the soundness of the conclusions. 

The use of readability formulas is associated with certain disadvantages and limitations, which 
can of course affect the analyses and implications presented. Readability formulas do not allow 
any real judgment about how comprehensible the meaning of a text really is. They do not 
provide any indication of prior knowledge required or coherence of a text and cannot judge 
mood or tone (Redish, 2000). The wide variation of readability measures is the reason that 
several measures were examined in this study for the purpose of robustness. However, it should 
be noted that text analysis is constantly evolving and the metrics used here are not necessarily 
the "best" ones and, depending on the context and goal, other metrics based on, e.g., word 
phrases (De Clercq et al., 2014) or semantics (Crossley et al., 2017), may be more appropriate 
to assess a text (Crossley et al., 2019). 

4.2 Future research 

The relationship between abstract readability and scientific impact could be determined with 
greater precision if a follow-up study were to also incorporate data on the “actual quality” of 
the articles. Any such an assessment of quality would, for a data set of this size, of course have 
to rely on proxies, with all the associated limitations. Additionally, it should be investigated 
whether there is a quadratic effect. It is conceivable that overly complicated abstracts may even 
harm citations, or that the effect is not linear, but that the marginal impact eventually decreases. 
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The effect of less complex abstracts being more likely to remain uncited may result from a 
citation bias against non-English-native-speaker authors. Such people write less complicated 
sentences, and the reader may think that the content is then also less citation-worthy. This is a 
significant question for future research. 

Given that scientific articles change over the course of the publication process (e.g. following 
peer-review) and the publication of working papers is increasingly becoming common practice, 
it would be possible to investigate how the readability of abstracts changes in the different 
stages of publication. This would allow us to identify how a gradual change in readability 
corresponds to specific goal, such as citation counts. The results may help authors and journals 
develop better publication strategies. The study by Marino Fages (2020) can provide a basis 
for such an investigation. 

For a complex abstract to be a credible signal of article quality, it must be costly (to fake). But 
what exactly is the cost? Future research might ask subjects with and without detailed 
knowledge of readability metrics to purposely increase the readability scores without changing 
the contents of the texts. The time it takes them to achieve a given increase in the readability 
scores may be regarded as a measure of cost. It remains open whether the chances of citations 
would increase at all in the context of differently complex language with the same content or 
same quality. To test this, one could give scientists in an experiment some abstracts to read, 
which have the same content and include either easy and complex language. The variants are 
randomly distributed among the scientists. These individuals are then asked to determine the 
presumed content quality (citation worthiness) of the papers. 

The semi-subjective selection of twelve emerging technology discourses for this study satisfies 
its exploratory nature. Future research could examine additional technologies, look at 
commonalities between discourses, or examine the title and main text of the publications in 
addition to the abstracts. Research on readability has already looked at scientific publications 
in general, at individual journals and sectors, and now at technologies. Other superordinate 
areas, such as countries, languages, theories or phenomena, may also be of interest. 

5 Conclusion 

Given their potential to transform systems, markets and processes (Martin, 1995; Rotolo et al., 
2015), emerging technologies are clearly a relevant factor for policy-making, hence the great 
interest to identify them at an early stage and to assess, forecast and evaluate their development 
(e.g., Joung und Kim 2017; Kyebambe et al. 2017; Lee et al. 2018; H. Xu et al. 2021). One step 
to this end can be to identify which scientific publications will likely have great impact. The 
readability of the abstracts, i.e. the level of education that is required to understand them, can 
be one of many pieces of information from which to systematically classify and analyze 
academic discourses and their development. While text readability, scientific impact and 
emerging technologies have received ample attention from the scientific community, little 
context has been established between these three factors. It would be particularly valuable to 
see whether any fundamental cross-technology similarities over time can be observed. 
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This study has aimed to provide that bridge between readability, scientific impact and academic 
research on emerging technologies. To this end, twelve technological discourses of various 
degrees of maturity were selected. For these discourses, we collected all publications contained 
in the WoS database, obtaining a total of 135,502 articles. The largest and one of the oldest 
discourses is AI with 30,473 scientific articles published between 1985 and 2020, and the 
smallest is Digital Twin with 711 publications. For each publication, we calculated the 
readability score of the abstract using the readability measures FKG, SMOG, and ARI. In 
addition, normalized citations were calculated for each article.  

We find that the readability scores, i.e. the complexity of the language, have increased over 
time in virtually all discourses. This result can be used to better understand and predict the 
growth and development of emerging technologies. However, a clear interpretation requires 
further in-depth analysis and robustness checks to clarify whether, for example, this 
phenomenon is specific to certain technologies or extends to all academic texts. Our analysis 
furthermore shows that higher readability scores significantly reduce the likelihood of articles 
not receiving any citations. For the larger and older discourses, higher readability scores 
promote the chances of an article being in the top 10% or top 1% in terms of citations. Hence 
the title of this paper: “Readability affects scientific impact”. While we find significant 
relationships between readability and scientific impact, we cannot determine the extent to 
which citations are actually influenced by readability and the extent to which a causal 
relationship exists. Future research should explore the questions of causality and influence of 
readability on scientific impact in more detail, as this determination has high relevance for 
potential implications. 

One implication of these results is that "the market" for scientific publications, at least on these 
specific technologies, may be subject to critical incentives. If readability drives scientific 
impact, authors have an incentive to (artificially) increase the complexity of their writing style 
in order to signal the quality of their papers to the readers. Authors who resist this temptation 
run the risk of being systematically underestimated. Any such complexity inflation would 
impair the ability of the readers to screen the quality of the articles, which makes the scientific 
system less efficient. Future research should verify whether such a moral hazard in academic 
(abstract) writing exists, i.e. whether authors intentionally communicate their work in an 
unnecessarily complex manner. Such behavior would run counter to general scientific goals, 
such as clarity and simplicity, and would challenge readers, academic journals, research 
institutions and other stakeholders to develop an appropriate response. 
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